

26 MM CAN STACK STEPPER MOTOR LINEAR ACTUATOR

Can-stack linear actuators from Helix Linear Technologies leverage permanent magnets and stepper motor operation to convert rotary motion into linear motion in applications requiring a small footprint and high torque-to-size ratios. Our can stack linear actuators use neodymium magnets and incorporate tight tolerances to minimize air gaps for improved performance over traditional can stack linear actuators. Available in captive, non-captive, and external configurations, typical applications include medical equipment, laboratory instrumentation, and printing equipment.

Series	_	Motor	Style	Step Length	Coils	Screw Code ID	_	Voltage (VDC)	_	Stroke Code
			C = Captive	F = 7.5°		1=.001in (.0254 mm)	5			
CLA		26	N = Non-Captive	1 - 7.0	4 Bipolar	2=.002 in (.0508 mm)			See tables below.	
			N = Non-Captive		(4 wire)	3=.0005 in (.0127 mm)				
			E = External	nal E = 15°		4=.004 in (.1016 mm)		12		

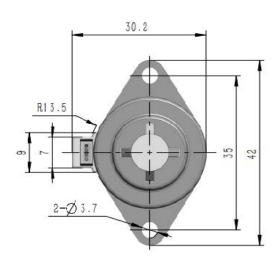
Example Part Number: CLA – 26CF43 – 12 – 303

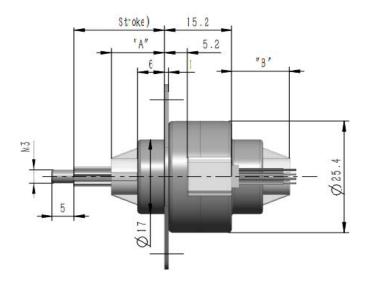
Captive Stroke Code	Stroke (mm)	Size A (mm)	Size B (mm)
302	12.7	11.99	12.9
303	18	17.28	18.28
304	25	24.26	25.26
305	31	30.25	31.25

Non-Captive & External Stroke Codes	Stroke (in)	Stroke (mm)
302	0.5	12.7
303	0.7087	18
304	0.9843	25
305	1.2204	31

TRAVEL PER STEP					
Step Angle	Lead (in)	Lead (mm)	Travel Per Step (in)	Travel Per Step (mm)	Code ID
	.024	.6096	.0005	.0127	3
	.028	.7008	.000574	.0146	В
	.039	.9984	.0008	.0208	7
	.048	1.2192	.001	.0254	1
	.078	1.9997	.0016	.04166	8
	.096	2.4384	.002	.0508	2
7.5°	.12	.3048	.00025	.00635	С
	.157	3.9984	.0032	.0833	9
	.192	4.8768	.004	.1016	4
	.314	7.9997	.0065	.16666	А
	.384	9.7536	.008	.2032	5
	.768	19.5072	.016	.4064	6
	0.024	.6096	.001	.0254	1
15°	0.048	1.2192	.002	.0508	2
	0.096	2.4384	.004	.1016	4

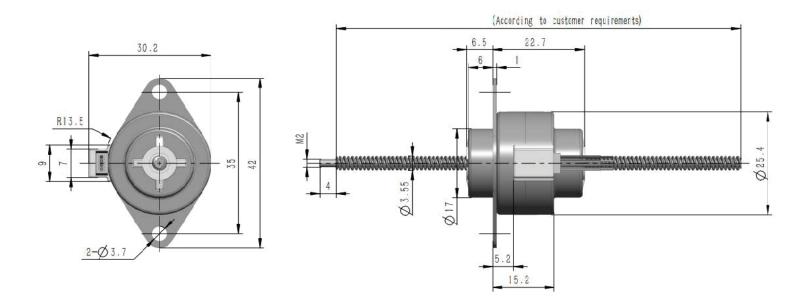
		FEATURES						
	Captive	CLA-2	CLA-26CF4 CLA-26C		26CE4			
Part No.	Non-Captive	CLA-2	CLA-26NF4		CLA-26NE4			
	External	CLA-2	CLA-26EF4		CLA-26EF4			
Wiring	Units		Bip	olar	ar 15°			
Step Angle	Degree	7.5	ō°	1	5°			
Winding Voltage	VDC	5	12	5	12			
Current/Phase	A rms	.0385	0.16	.0385	0.16			
Resistance/Phase	Ω	13	72	13	72			
Inductance/Phase	mH	10.6	60	10.6	48			
Power Input	Watts		3.85					
Rotor Inertia	gcm²		1.	07				
Insulation Class		Le	evel B (75°C Te	emperature Ris	e)			
Weight	oz (g)		1.74	(49)				
Insulation Resistance	MΩ		2	0				


Standard motors are Class B rated for a maximum temperature of 130°C.



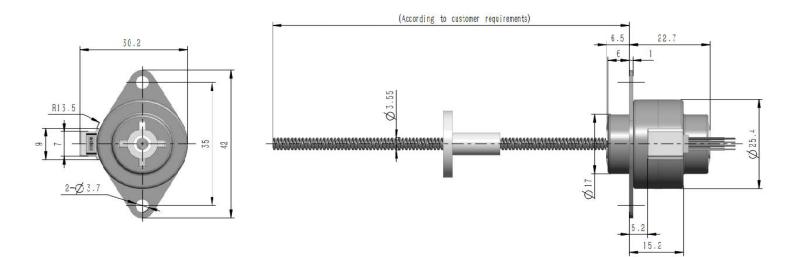
26 MM CAN STACK STEPPER MOTOR LINEAR ACTUATOR

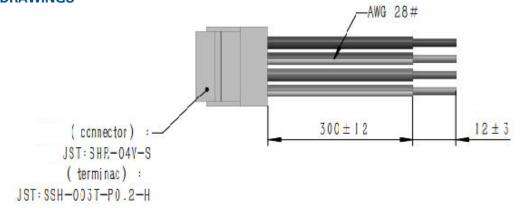
DIMENSIONAL DRAWINGS


Captive

DIMENSIONAL DRAWINGS

Non-Captive




26 MM CAN STACK STEPPER MOTOR LINEAR ACTUATOR

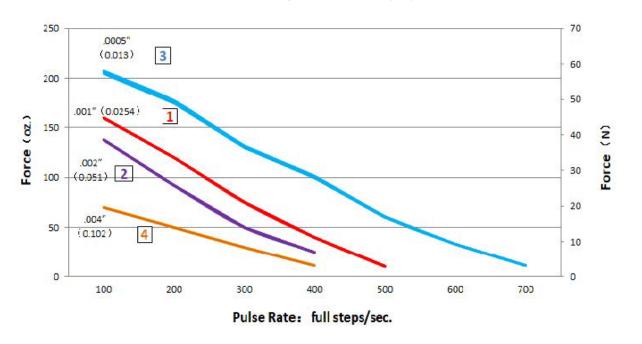
DIMENSIONAL DRAWINGS

External Linear

DIMENSIONAL DRAWINGS Motor Outlet

Pin	Color
1	Red
2	Red/White
3	Green
4	Green/White

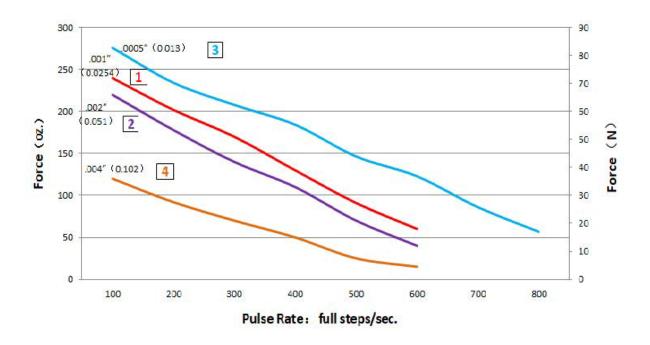
HelixLinear.com



26 MM CAN STACK STEPPER MOTOR LINEAR ACTUATOR

PERFORMANCE CURVES

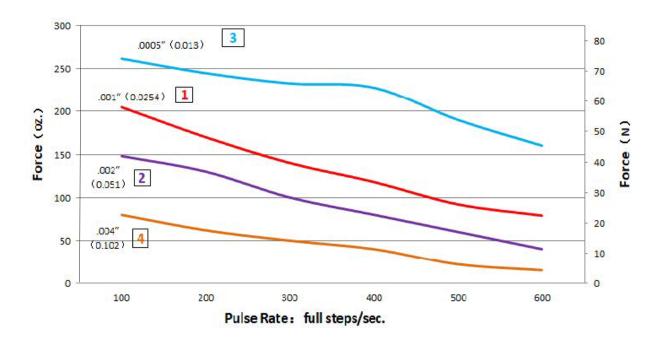
Force vs. Pulse Rate


L/R Drive, Bipolar, 100% Duty Cycle

PERFORMANCE CURVES

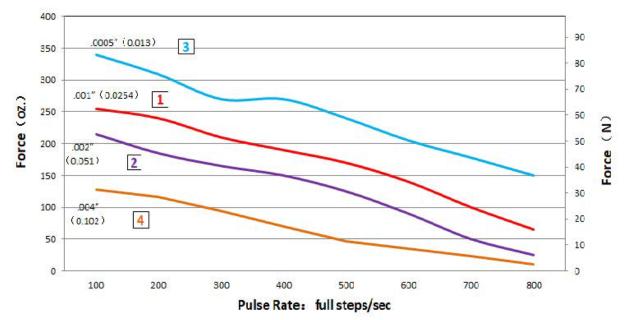
Force vs. Pulse Rates

L/R Drive, Bipolar, 25% Duty Cycle


25% Duty cycle is obtained by a special winding or by running a standard motor at double the rated current. With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

PERFORMANCE CURVES

Force vs. Pulse Rate


Chopper Drive, Bipolar, 100% Duty Cycle

PERFORMANCE CURVES

Force vs. Pulse Rates

Chopper Drive, Bipolar, 25% Duty Cycle

25% Duty cycle is obtained by a special winding or by running a standard motor at double the rated current.

All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.