Engineered Elastomeric Seals and Sealing Solutions

A member of the global group Fenner

CDI Energy Products	3
1. Materials Science and Technology	
1.1 Common Material Testing	8
1.2 Information Available for Certifications	9
2. Engineered Elastomeric Materials	
2.1 Elastomer Material Families	10
2.2 Reviewing Relative Material Test Data	12
2.3 Material Family Reference	13
NBR	13
HNBR	13
FKM	14
FEPM	14
FFKM	15
FVMQ	15
PU	16
EPDM	16
CR	17
XNBR	17
2.4 Material Selection for Elastomeric Seal Compatibilty and Performance	18
3. Material Compatibility: Media, Performance, and Temperature	24
4. Engineered Elastomeric Seals and Sealing Solutions	
FS-Seals	26
S-Seals	28
P-Seals	31
T-Seals	34
OL-Seals	36
A6R Seals	39
PBR (Polished Bore Receptacle) Stacks and Packing Sets	42

5. Custom Engineered Elastomer Products and Product Manufacturing Capabilities

Appendix 1. CDI Energy Products Global Elastomer Compound List 2. Technical Report: ISO / NORSOK Certified Elastomer Materials 3. Technical Report: API 6A, Appendix-F Immersions

47

51

54

TABLES

1. Manufacturing Capacity	7
2. Standard Material Testing	8
3. List of Available Certifications for Elastomer Materials	9
4. Classes of the Common Elastomers and Their General Chemical Compatibility	11
5. Seal Applications, Environmental Consideration, and Service Life	18
6. Common Well Additives and Relative Effects	19
 Elastomeric Seal Compatibility Matrix: Low Percentages of CO₂ (Fahrenheit) 	20
 Elastomeric Seal Compatibility Matrix: High Percentages of CO₂ (Fahrenheit) 	21
 Elastomeric Seal Compatibility Matrix: Low Percentages of CO₂(Celsius) 	22
10. Elastomeric Seal Compatibility Matrix: High Percentages of CO₂(Celsius)	23
11. Standard CDI Elastomeric Materials for Engineered Elastomeric Seals for the Oilfield	24

To learn how CDI Energy Products can improve performance in your operations,

please visit our website at CDIproducts.com or submit an inquiry at CDI-Global.Sales@CDIproducts.com

46

Global Challenges. Global Capabilities.

Engineered Products and Customized Sealing Solutions for the Energy Industry

Increasingly severe conditions associated with oil and gas exploration, drilling, completion, and production introduce unique challenges that threaten the optimal performance of critical equipment. In response to the increasing complexity of extracting hydrocarbons, energy operators and service companies alike look for innovative engineering design that will protect assets, personnel, and the environment. Whether surface and topside, downhole, or subsea, CDI Energy Products transforms specialized materials into engineered solutions that address critical performance challenges. With decades of experience in providing leadingedge, critical-service sealing solutions, we are your responsive, innovative, and collaborative partner.

Services and Activities	Applications and Equipment	
Seismic	Geophones and streamers	
Well Construction	Top drive systems, liner hangers, pumping systems, rig equipment, cementing heads, drill bits, motors, and jars	
Pressure Controls	Wellheads, trees, and BOPs	
Logging and Measurement	MWD, LWD, openhole, and cased-hole	
Stimulation and Completions	Packers, bridge plugs, frac plugs, and pressure pumping (including hydraulic fracturing)	
Downhole Tools	Completion systems, cased-hole logging systems, wireline tools	
Production Optimization	Enhanced oil recovery, artificial lift, measurement, and monitoring	
Intervention	Coiled tubing systems, workover equipment	
Wellhead	Surface and subsea systems	
Workover Equipment	Ram and annular BOP components, seals, and blocks	

Quality Assurance

At CDI Energy Products, we address quality at every step, from concept to completion. Using state-of-the-art manufacturing technology, robotic cells, and advanced manufacturing processes, we ensure the highest level of precision and process control. Quality is also maintained through strict adherence to detailed document review, well-defined and repeatable processes, and statistically based inspection plans.

Quality, Health, Safety, Environment (QHSE)

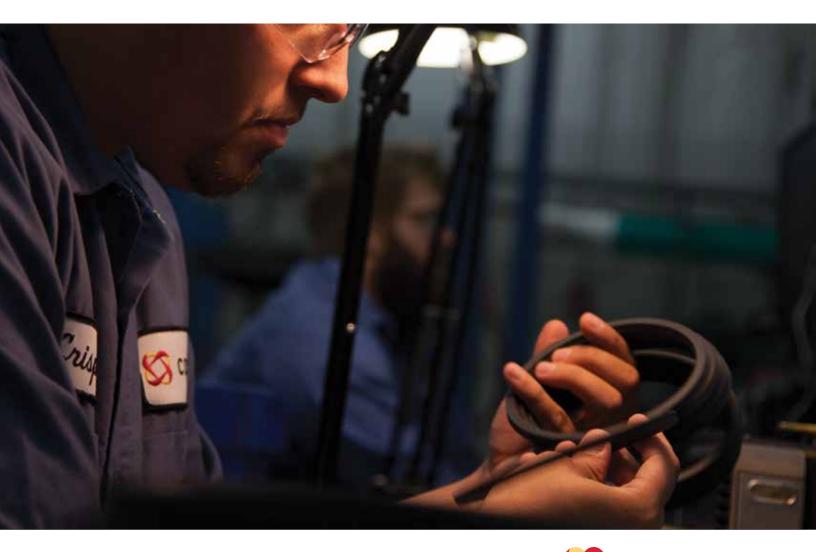
Our commitment to QHSE comes from genuine concern for our people, our customers, the environment, and corporate responsibility. The health and safety culture at CDI Energy Products is based on personal empowerment, encouraging each of our employees to take personal responsibility in following the protocols and procedures that ensure QHSE compliance. Our first priority is to ensure that each of our employees returns home safely.

Manufacturing Facility QHSE Certifications

E N E R G Y P R O D U C T S

Singapore

ISO 9001:2008 ISO 14001:2004 OHSAS 18001:2007 bizSAFE Level Star


Hampton, UK

ISO 9001:2008 ISO 14001:2004 OHSAS 18001:2007

Leeds, UK ISO 9001:2008

Houston, US

ISO 9001:2008 ISO 14001:2004 OHSAS 18001:2007

Materials Science, Engineering Design, and Advanced **Manufacturing**

The broad range of customized seals, engineered components, and packing assemblies offered by CDI Energy Products is backed by extensive research and some of the industry's most advanced manufacturing capabilities and high-performance material compounds. Combining our expertise in materials science, engineering design, and advanced manufacturing, we have a multidisciplinary project team capable of providing you with a versatile resource for developing unique sealing solutions for your applications.

Materials Science Expertise

Our expertise in materials science enables us to ensure sealability across the broad pressures, temperatures, and media found in the global energy industry. Ready to implement the latest advancements in materials science, CDI Energy Products has a materials portfolio that includes advanced polymers such as API-, NACE-, ISO-, and NORSOK-approved compounds, and is continually updated by a global team of scientists on the forefront of new technology development.

In addition to our ability to engineer and transform elastomer materials, our cross-functional team works with a portfolio of high-performance polymeric and metallic materials, including:

Elastomers

- NBR
- HNBR
- FKM (Viton[®])
- FEPM
- FEPM (Aflas[®])
- FVMQ
- PU
- FPDM
- CR
- XNBR

Composites

- Particle-reinforced
- Fiber-reinforced
- Fabric-reinforced

Plastics

- PTFE (Teflon[®]), filled and unfilled PTFE / M-PTFE
- PA (Nylon[®])
- PFA
- PVDF (Kynar[®])
- CTFE
- PEI (Ultem[®])
- PI (Vespel[®])
- PE, UHMW
- POM (Acetal, Delrin[®])
- ETFE (Tefzel[®])
- ECTFE (Halar[®])
- Polypropylene
- PPS (Ryton[®])
- PEEK[®], PEK, PEKEKK

Thermoset Plastics

- PF (phenolics)
- EP / epoxy

Metals

- Carbon steel
- Low-alloy steel
- Aluminum bronze
- Stainless steel
- Nickel-based alloys
- Titanium
- Cobalt (Elgilov[®])

Metal Coatings

- NOROSK M501
- PTFE (Xylan[®])
- Molybdenum disulfide (MoS₂)
- Silver and zinc plating
- Three-coat epoxy for seawater immersion (C-157)
- System 7[®]
- Zinc phosphate
- Manganese phosphate
- Everlube[®]

Engineering Design

Our laboratory and testing facilities are critical in the development of engineered sealing solutions and proprietary material formulations. We combine our expertise in advanced materials science with superior design capabilities, such as finite elemental analysis (FEA) and plastic flow simulation, and material and product fixture testing. From custom elastomeric seals, to plastic and metallic sealing components, our team of cross-functional experts works to ensure that each component is designed to meet your performance requirements.

Design

- 3D modeling and drafting packages (handling formats such as .SLDDRW, .SLDASM, .SLDPT, .SLDDR, .VLM, .DXF, .DWG, .IGES, and .ProE)
- Our proprietary computerized design equations for completely automated drafting of standard CDI products

Analysis

- Advanced FEA packages, specifically adapted for the non-linearity of polymeric materials; both plastics and elastomers
- Computational polymer melt rheology for mold optimization
- Advanced engineering calculus software packages
- Engineering library related to seals, materials, and manufacturing technology

Experimental

- Tensile and compression experiments at different temperatures
- Dynamic mechanical analysis at different temperatures and strain rates (DMA, MA, TMA, TGA, DSC all standard thermal analysis instruments)
- Standard thermal analysis instruments (DSC, TMA, TGA)
- Rheology
- Wear testing: dry or lubricated, with or without temperature control
- Chemical compatibility testing (liquids / gas, pressurized / non-pressurized)
- Compound development
- High-pressure testing capabilities suitable for ISO, NORSOK, and API qualification

Advanced Manufacturing

Drawing on 40 years of experience, each customized solution benefits from our extensive machining and molding capabilities. Our skilled manufacturing specialists and programmers apply unique designs to precisely transform advanced materials into finished products that meet your specifications. With manufacturing facilities in the US, Singapore, and the UK, we employ more than 30 different molding methods and manufacturing processes, including:

Precision Machining

Composite Machining

Precision Polymer Machining

- CNC (lathes and mills, including 5-axis machining)
- Manual (lathes and mills)
- Screw

Precision Metal Machining

- CNC turning
- CNC milling (vertical and horizontal)
- EDM / wire erosion

Bonding Capabilities

- Metal to rubber
- Metal to plastic
- Rubber to rubber
- Rubber to wiremesh
- Rubber to plastic

Large-Diameter Production

- Compression Molding
- Machining
- CNC
- Manual

Molding

- Injection (rubber and plastic)
- Compression (rubber, PTFE, thermoset)
- Melt molding
- Automatic molding / automolding (thermosets and PTFE)
- Transfer molding

Post-Processing/Post-Production Mods

Surface Treatments

- Friction-reducing treatment
- Plasma

Coating

- NOROSK M501
- PTFE (Xylan[®])
- Molybdenum disulfide (MoS₂)
- Silver and zinc plating
- Three-coat epoxy for seawater immersion (C-157)
- System 7®
- Zinc phosphate
- Manganese phosphate
- Everlube®

Surface modifications

- OptiEtch™
- OptiLok™

Custom Tool Manufacturing

Table 1: Manufacturing Capacity		
Material	Molding Capability	Machining Capability
Thermoplastics Injection	Molding to 30"	Machining to 100"
Elastomers Compression	Molding to 32"	Machining to 32"
PTFE Compression	Molding to 100"	Machining to 100"
Cast Polymers	Cast to 100"	Machining to 100"

Materials Science and Technology

1.1 Common Material Testing

For a seal to perform optimally, its material must possess physical and chemical properties that are compatible for the given application conditions. To verify that the material is suitable for the performance environment, laboratory testing can be conducted, resulting in a comprehensive material characterization along with considerations for part design and manufacturing processes required for producing the final product.

When material testing is required for your application, we are able to provide a range of standard (ASTM, ISO, DIN, JIS, etc.) tests, along with custom testing specifically developed to reveal material and product behavior under certain performance conditions. This testing helps ensure that our products meet customer requirements for pressure, temperature, chemical resistance, wear resistance, extrusion, expected lifetimes, ease of installation, and operational performance.

The chart below lists some of our standard tests and testing procedures for both plastic and elastomer materials.

Material Type	Testing Performed	
	Hardness: This test is used mostly for control purposes, as no simple relationship exists between hardness and any fundamental physical property. This testing is useful for "first approximation," for narrowing the field of potential candidate materials.	
	Tensile stress-strain properties: The fundamental mechanical properties are derived from the stress-strain curve for later use in analytical and FEA calculations for product design and for qualit control of incoming batches.	
	Compressive stress-strain properties: This testing complements the tensile stress-strain curve to complete the understanding of the range of deformations. It also focuses on identifying the compressive failure of materials.	
	Thermal: Ideal room temperature scenarios are not comparable to the real world operating environment. Because of this, elasticity and viscoelasticity of materials as well as their additional thermal properties are critically important in harsh environments where temperature or thermal limits are a concern.	
	Compression or permanent set: Used to quantify relative determination of the residual seal force after subjecting a material to prolonged deflections.	
Elastomers	Rheology: Used most often for rubbers, in order to optimize the vulcanization process. For plastic rheological characterization is required for optimizing mold designs and manufacturing processes	
	Specific gravity: Measuring the density of a material to the density of water supports quality assurance and lot-to-lot consistency.	
	Chemical resistance and heat aging tests: This testing identifies resistance and chemical compatibility of a material with various media at operational parameters such as time, temperatur pressure, and concentration.	
	Wear: These tests determine the wear resistance and abrasivity of materials under single direction sliding or in reciprocating dynamics, under specific pressures, velocities, lubrication modes, temperatures, and abrasives. Important in dynamic applications, where single direction or reciprocating dynamics is involved. We perform both dry and lubricated wear tests.	
	Tear resistance: Measures a material's resistance to crack, propagation, and tear.	
	Adhesion: This serves primarily as a quality control test for the bonding of dissimilar materials.	

1.2 Information Available for Certifications

Each polymer and material compound has its own group of applicable tests, available certifications, and industry standards. When developing material specifications, OEMs and service companies may develop requirements based on the needs of their individual applications. In the evaluation of material properties and characteristics, there is a limit as to how much data can be obtained from batch certificates for raw materials. To address these concerns, our materials specialists are able to conduct standard tests for each of our materials as well as develop additional test values per your specification. The chart below shows the standard test data available for various material types:

Table 3: List of Available Standard Certifications for Elastomer Materials		
Type of Certification	Properties	Standard
Typical data available for a certificate of conformance (COC)	Batch Information	_
C01 Properties	Batch Data Shore Hardness	ASTM Standard
C11 includes CO1 properties along with the additional tests listed	Tensile Strength Elongation 100% Modulus Specific Gravity	D412 D412 D412 D792 D2240
Notes:		qualification basis for an additional charge. d time required.

Engineered Elastomeric Materials

2.1 Elastomer Material Families

When proposing an oilfield sealing solution, the inherent properties of elastomers make them ideally suited to survive pressures, chemicals, abrasives, and other challenges common in the oil and gas industry. However, these material properties have to be combined with comprehensive consideration of all engineering aspects.

Some of the more common engineering aspects found in the oil and gas sector include overall assembly geometry and effect of the application constraints (gland design, extrusion gaps, etc.). Other considerations can be expanded to include things such as:

- Hydrodynamics and wettability
- Surface roughness of counter surfaces
- Dynamic or static applications
- Gases or fluids (inert or aggressive)
- Thermal fluctuations (with or without)
- Expected lifetimes

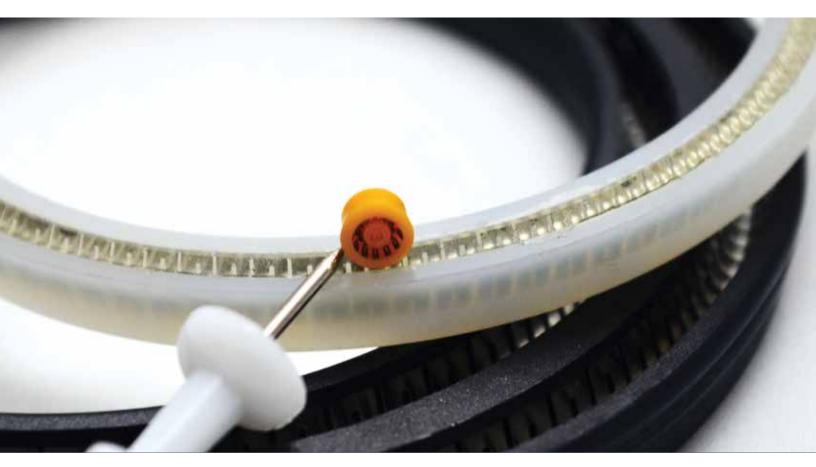
While a number of other critical elements can and should be considered alongside those referenced, proper evaluation of such factors creates the ideal scenario to design, engineer, and manufacture a sealing system that will be successful for a given application.

After evaluating service conditions to remedy any issue related to sealability, selecting a proper material is essential. The standard chemical and mechanical properties of certain elastomers make them ideal candidates for certain service conditions and less-than-ideal candidates for others. In many cases, our materials scientists can also tailor material properties, addressing specific requirements for applications with extreme operating parameters. Table 4 gives a generalized overview of the major material families, their trade names, and recommended service.

2. Engineered Elastomeric Materials

		Table 4: Classes of the Common Elastomers and The	eir General Chemical Compatibility
	Families of	most-common seal-grade elastomers	Chemical Compatibility
			Recommended Service: Petroleum oils and fuels, water, glycols, silicones
	NBR	Nitrile, Buna-N	Not Recommended: Ketones, esters, amines, halohydrocarbons, aldehydes
	HNBR	3R Hydrogenated nitrile	Recommended Service: Same as NBR and XNBR but with higher heat resistance, enhanced physical properties, and increased chemical resistance. Good for harsh well service (i.e.: H_2S , water steam, CO_2 , and amine corrosion inhibitors)
			Not Recommended: Strong acids, halohydrocarbons
	FKM	Fluoroelastomer	Recommended Service: Petroleum oils and fuels, acids, halohydrocarbons, phosphate esters
		Fluoroelasiomer	Not Recommended: Ketones, amines, low-molecular-weight esters, hot water, and steam
	FEPM	TFE/P	Recommended Service: Sour petroleum oils and fuels, acids, bases, amines, steam
			Not Recommended: Halohydrocarbons
1418	FFKM	Perfluoroelastomer	Recommended Service: Sour petroleum, acids, bases, MTBE, ketones
ASTM D-1418			Not Recommended: Alkali metal solutions
ASI	FVMQ	Fluorosilicone	Recommended Service: Water, steam, alcohols, phosphate esters
			Not Recommended: Brake fluids, ketones
	PU	Polyurethane	Recommended Service: Certain hydraulic fluids, aromatic hydrocarbons, certain greases
			Not Recommended: Water, strong acids, chlorinated and nitro-hydrocarbons, high temperatures
		EPDM Ethylene propylene, EPR	Recommended Service: Water, steam, alcohols, ketones, phosphate esters
	EPDM		Not Recommended: Petroleum oils and fuels, diester fluids, aromatic hydrocarbons
		CR Polychloroprene, neoprene	Recommended Service: Freon [®] , ammonia, silicate esters, certain hydraulic fluids
			Not Recommended: Petroleum oil and fuels, ketones, strong acids, steam, phosphate esters, halohydrocarbons
			Recommended Service: Same as NBR, but with improved thermal properties and abrasion resistance
	XNBR Carboxylated nitrile		Not recommended: Concentrated organic acids, alcohols, amines, ethers

2.2 Reviewing Relative Material Test Data

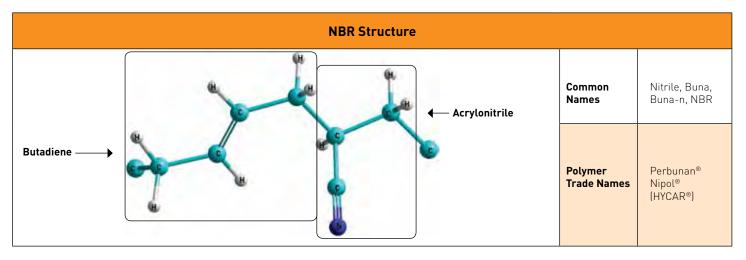

When reviewing relative material test data, it should be kept in mind that generalized compatibility of materials is a qualitative deductive process used to filter out materials that are unsuitable for relative application conditions and parameters. For many critical applications, chemical compatibility must have quantitative data allowing for more precise and nuanced material recommendations.

This requires asking difficult questions, such as:

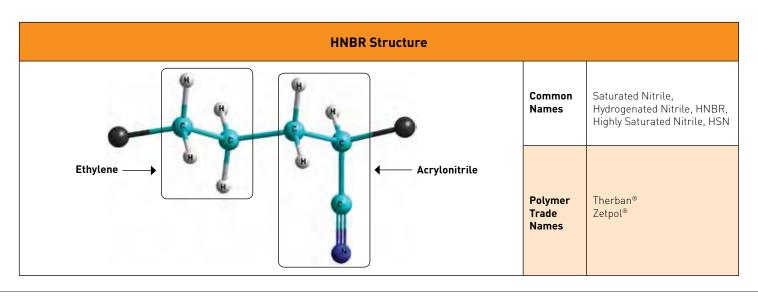
- How bad is bad, and how good is good?
- How long does it take to drop material properties by 50% (or another relative percentage)?
- What about temperature (which has exponential influence on chemical reaction rates)?
- What about pressure (which affects saturation rates for fluids and chemical reaction rates for gases)?

These questions and many others need to have clear answers before a product can be designed, manufactured, and put to use in the field. In general, material properties are a function of many variables, including time, temperature, pressure, area of exposure, applied stress and deformations, amount of applied deformations, and chemical aggressiveness of the environment.

To ensure that a material will work in a particular application, physical and chemical properties of the material should be analyzed in conditions close to real-life scenarios, with consideration for expected lifetimes. Our materials science team routinely performs extensive chemical resistance studies in order to provide quantitative data, ensuring a confident choice of materials. We also pay close attention to the thermal performance of materials, as polymers exhibit nonlinear thermal behavior, which should be considered in stress/strain analysis.



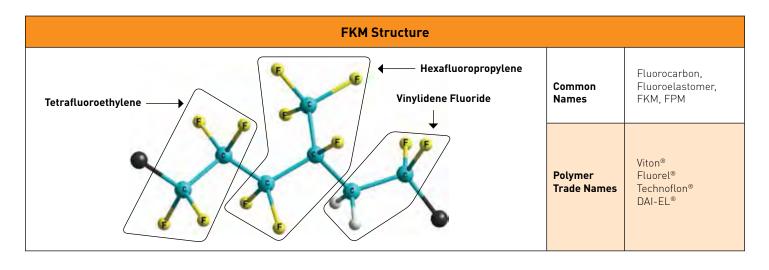
2.3 Material Family Reference

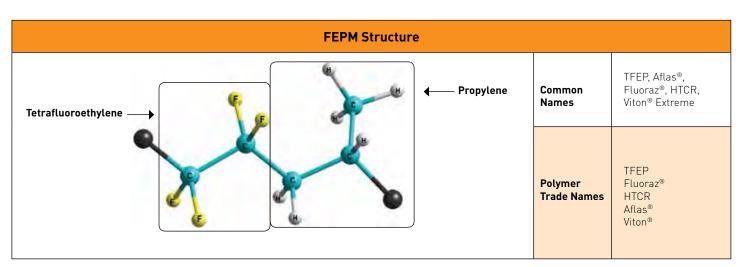

NBR NITRILE (NBR)

A copolymer of acrylonitrile (ACN) and butadiene. Good oil and fuel resistance and suitable for most petroleum product applications. Due to the variety of polymer types and range of cure methods available, compounding is very diverse. Sulfur vs. peroxide cure must be evaluated based on service requirements and cost effectiveness. Resistance to high pressure CO₂ and methane requires high-modulus compounds to resist explosive decompression. NBR is not recommended for service in acids, bases, ketones, esters, bromides, and steam.

HNBR HYDROGENATED NITRILE (HNBR)

A class of nitrile polymer. HNBR compounds retain the hydrocarbon and fuel resistance of regular nitriles while exhibiting improved physical and thermal properties. These improvements are the result of reducing or eliminating unstable double bonds in the polymer backbone. This reduction of double bonds (hydrogenation) provides improved chemical resistance over regular nitrites. HNBR is not recommended for service in strong acids, ketones, esters, and halohydrocarbons.

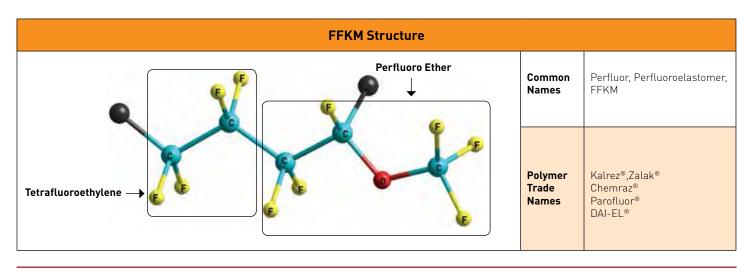



FKM FLUOROCARBON (FKM)

This elastomer is widely used in oilfield and chemical applications. Highperformance polymer with excellent thermal properties combined with strong resistance to hydrocarbons, H₂S and CH₄, chemicals, and heat. Two major types of polymer exist: FKM copolymer (Type A or E) and FKM terpolymer (Type B or GF). The fluorine content present in the terpolymer increases chemical resistance but compromises lowtemperature capability. The GF-type is a tetrapolymer that is suitable for peroxide curing.

FEPM TETRAFLUOROETHYLENE PROPYLENE

FEPM is a high-performance class of fluorocarbon and olefin copolymer. Compounds of FEPM offer oil and chemical resistance, along with excellent thermal properties. The notable improvement over FKM polymers for oilfield applications is resistance to both acids and bases. Newer FEPM-2 polymers based on ethylene, TFE, and PMVE offer increased chemical resistance. Widely used in oilfield and chemical applications, FEPM resists oil, amines, corrosion inhibitors, H₂S, CO₂, and CH₄, all of which are encountered in harsh well service. FEPM is recommended for service in acids, bases, hydraulic fluids, brake fluids, steam, alcohols, ozone, and gamma radiation.



To learn how CDI Energy Products can improve performance in your operations,

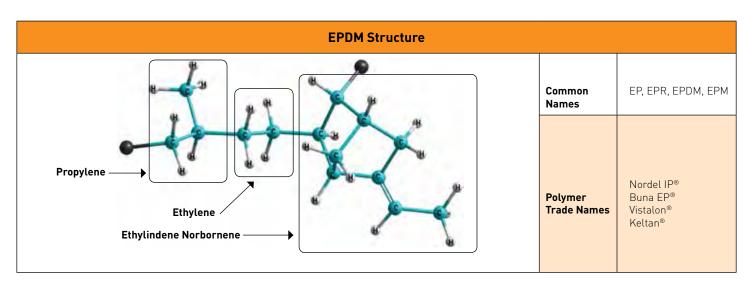
please visit our website at CDIproducts.com or submit an inquiry at CDI-Global.Sales@CDIproducts.com

FFKM PERFLUOROELASTOMER (FFKM)

A fully fluorinated high-performance elastomer. Offers greater chemical and thermal aging resistance compared to traditional FKM and FEPM compounds. Offers the broadest chemical resistance of any elastomeric seal material due to a fully fluorinated structure. Recommended services include acids, bases, hydrocarbons, and ozone. Not recommended for service in fully halogenated fluids and molten alkali metals.

FVMQ FLUOROSILOCONE (FVMQ)

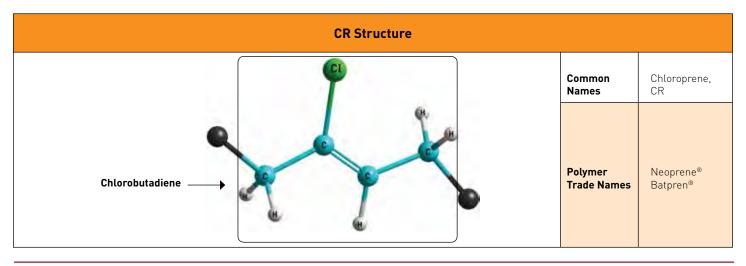
FLUOROSILICONE (FVMQ) elastomer is an inorganic polymer, meaning that it does not have a carbon-tocarbon backbone typical of most other elastomers. This gives FVMQ compounds some unique properties related to low-temperature capability. Unlike a similar polymer—silicone (VMQ)—fluorosilicone has notable oil and fuel resistance, along with slightly lower thermal resistance. While its thermal and chemical properties are strong, its major weakness is mechanical strength and abrasion resistance, and this generally limits its use to static sealing applications. Co-molding FVMQ into PTFE and other thermoplastic jackets has broadened its usage in methanol injection pumps for low-temperature wellhead applications.


PU POLYURETHANE (PU)

A widely used versatile compound in the oilfield and in many other dynamic applications, polyurethanes have a urethane linkage in the repeating units. This material is made by a reaction of a polyol with diisocyanate, both of which can be different types, allowing the materials to be tailored to meet application conditions. Diisocyanates can be aromatic or aliphatic; polyols are usually classified as polyesther-, polyether-, polycarbonate-, or polycaprolactone-based. Polyurethanes are known for extremely high abrasion resistance (especially compared to conventional rubbers), notable mechanical properties, excellent fatigue resistance, and great chemical resistance. Such properties make them ideal as seal materials after thermal limits and potential for hydrolysis have been evaluated.

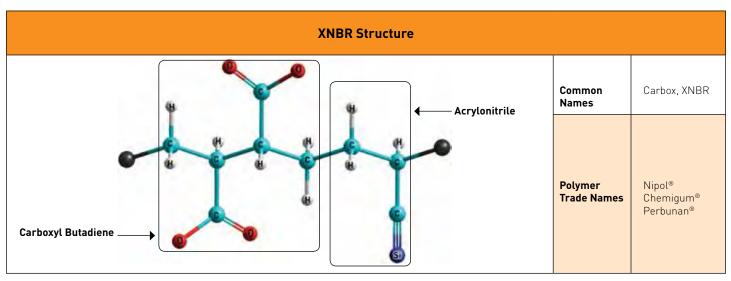
EPDM ETHYLENE PROPYLENE DIENE (EPDM)

A material used in applications requiring superior aging properties. Sample applications include heater and radiator hoses, and exterior weather and water seals. Excellent resistance to water-based hydraulic fluids. Also suitable in applications involving steam, such as enhanced recovery and geothermal energy. Suitable for most water, steam, alcohols, ketones, phosphate esters. Not recommended for service in petroleum oils and fuels, diester fluids, and aromatic hydrocarbons.



To learn how CDI Energy Products can improve performance in your operations,

please visit our website at CDIproducts.com or submit an inquiry at CDI-Global.Sales@CDIproducts.com


CR POLYCHLOROPRENE

Polychloroprene (CR) elastomer is a general-purpose elastomer used heavily in the fluid power industry due to a good balance of oil and ozone resistance. CR compounding is relatively simple; however, polymer choice is diverse. Differences in crystallization and viscosity have a large effect on properties and processability. The chlorine atom attached to the molecular chain provides resistance to paraffinbased lubricants while also providing good environmental resistance. CR is suitable for most non-aromatic petroleum lubricant applications. Other areas of use are in water, silicones, and weather. Strong resistance to CO₂ ammonia, and refrigerants. CR is not recommended for service in acids, bases, ketones, esters, aromatics, and chlorinated hydrocarbons.

XNBR CARBOXYLATED NITRILE (XNBR)

Widely used in the fluid power and upstream oil and gas industry due to good oil resistance. A copolymer of acrylonitrile (ACN) and butadiene with a carboxylic acid appendage, it has improved abrasion resistance over standard nitrile. Faces issues with higher compression set, metal bonding, and limited process life. Aforementioned issues can be remedied by using a peroxide cure; however, XNBR's excellent abrasion resistance is sacrificed. For new applications, hydrogenated nitrile (HNBR) may be considered rather than XNBR.

Design Criteria and Considerations

2.4 Material Selection for Elastomeric Seal Compatibility and Performance

Because no single seal design or material exists that is suitable for every application environment, careful attention must be paid to operating parameters and conditions that may impact seal performance. In designing the ideal sealing solution for your application, our team of experts carefully evaluates and incorporates seal design parameters based on your specific requirements.

Questions to asking when considering seal design and material selection:

Media Resistance: What materials can retain necessary physical properties in the given environment?

Sealability: How will the combination of materials and design effect the seal?

Mechanical Strength: Once the seal has been achieved, will the combination of material and design be of sufficient to perform as expected in the given application?

Evaluating Factors and Conditions

- Temperature
- Pressure
- Velocity
- Media or chemical resistance
- Material
- Friction
- Wear resistance
- Extrusion gap
- Hardware (gland envelope)
- Service requirements
- Seal geometry
- Industry and customer specifications

Table 5: Seal Applications, Environmental Consideration, and Service Life		
Seal Applications	Environmental	Service Life
 Fluid power Pneumatic Energy or shock absorption Media separation Pressure containment 	 Pressure Temperature Aggressive media Wet or dry environment Continuous or cyclical loads Dynamic or static stress 	 Wear resistance Material properties Resistance to creep and cold flow Compression set Resistance to aging and embrittlement Resilience

Elastomer Performance in the Presence of CO₂ and H₂S

In addition to the referenced evaluating factors and conditions, careful attention must be paid to the response of elastomeric materials in supercritical applications where highly volatile gases and fluids are present. The interaction of elastomeric materials with such gases as H₂S and CO₂ while in the presence of fluids such as water, amines, bromides, and methanol requires careful evaluation due to changing temperature and pressure scenarios.

The production environment is easily made acidic due to complex reactions between CO_2 and H_2S . When temperature and pressure challenges are added, supercritical gases can pose extreme challenges to the success and sealability of highperformance elastomers, which can result in rapid gas decompression (RGD), explosive decompression, and even application failure.

Table 6: Common Well Additives and Relative Effects		
Water	One of the main bases used for oilfield applications such as fracing and drilling	
Amines	Counteract the negative effects of H_2S	
Bromides	Provides a dense, heavy material that adds weight, which helps stabilize the casing within the well	
Alcohols (ex: methanol)	Used as antifreeze for liquids that are prone to freezing in low temperatures	

Considering these factors, current industry recommendations might discourage the use of various elastomers due to media combinations and concentrations. As additives are added to the mix, the information in the chart below is to be used as a relative guide based on field performance of elastomers when in the presence of the referenced media combinations.

The matrices found in Table 7 and Table 8 show the complex relationship between elastomer performance in the presence of H_2S and varying percentages of CO_2 along with the referenced media.

Table 7: Elastomeric Seal Compatibility Matrix: Low Percentages of CO2 (Fahrenheit)		
	When No H₂S Is Present	When H ₂ S Is Present
	-100°F 0°F 100°F 200°F 300°F 400°F 500°F	-100°F 0°F 100°F 200°F 300°F 400°F 500°F
Water	40 NBR 200 -70 NBR-LT 180 -50 HNBR 300 -60 HNBR-LT 250 -30 FKM 200 0 FEPM 500 -40 FFKM 500 -75 FVMQ 200 -75 PU 200	-40 NBR 150 -70 NBR-LT 180 -50 HNBR 225 -60 HNBR-LT 225 -30 FKM 200 0 FEPM 500 -75 FVMQ 150 -75 PU 200
Amines	-50 HNBR 300 -60 HNBR-LT 250 0 FEPM 500 -40 FFKM 450 -75 FVMQ 300 -75 PU 200	-50 HNBR 200 -60 HNBR-LT 200 0 FEPM 500 -40 FFKM 450 -75 FVMQ 200 -75 PU 200
Bromides	-30 FKM 400 0 FEPM 450 -40 FFKM 450 -75 PU 200	-30 FKM 400 0 FEPM 450 -40 FFKM 450 -75 PU 200
Methanol	-40 NBR 250 -75 NBR-LT 180 -50 HNBR 300 -60 HNBR-LT 250 0 FEPM 500 -75 FVMQ 300 -75 PU 200	-50 HNBR 200 -60 HNBR-LT 200 0 FEPM 450 -40 FFKM 450 -75 FVMQ 200 -75 PU 200

2. Elastomeric Seal Compatibility Matrix: High Percentages of CO₂ (Fahrenheit)

	Table 8: Elastomeric Seal Compatibility Matrix: Hig	h Percentages of CO ₂ (Fahrenheit)
	When No H ₂ S Is Present	When H ₂ S Is Present
	-100°F 0°F 100°F 200°F 300°F 400°F 500°F	-100°F 0°F 100°F 200°F 300°F 400°F 500°F
Water	-40 NBR 200 -70 NBR-LT 180 -50 HNBR 300 -60 HNBR-LT 250 -30 FKM 200 0 FEPM 500 -40 FFKM 500 -75 FVMQ 200 -75 PU 200	-40 NBR 150 -70 NBR-LT 180 -50 HNBR 225 -60 HNBR-LT 225 -30 FKM 200 0 FEPM 500 -40 FFKM 450 -75 FVMQ 150 -75 PU 200
Amines	-50 HNBR 300 -60 HNBR-LT 250 0 FEPM 500 -40 FFKM 450 -75 FVMQ 300 -75 PU 200	-50 HNBR 200 -60 HNBR-LT 200 0 FEPM 500 -40 FFKM 450 -75 FVMQ 200 -75 PU 200
Bromides	-30 FKM 200 0 FEPM 450 -40 FFKM 450 -75 PU 200	-30 FKM 200 0 FEPM 450 -40 FFKM 450 -75 PU 200
Methanol	-40 NBR 250 -75 NBR-LT 180 -50 HNBR 300 -60 HNBR-LT 250 0 FEPM 500 -75 FVMQ 300 -75 PU 200	-50 HNBR 200 -60 HNBR-LT 200 -40 FFKM 450 0 FEPM 450 -75 FVMQ 200 -75 PU 200

Sealing Solutions for Demanding Environments

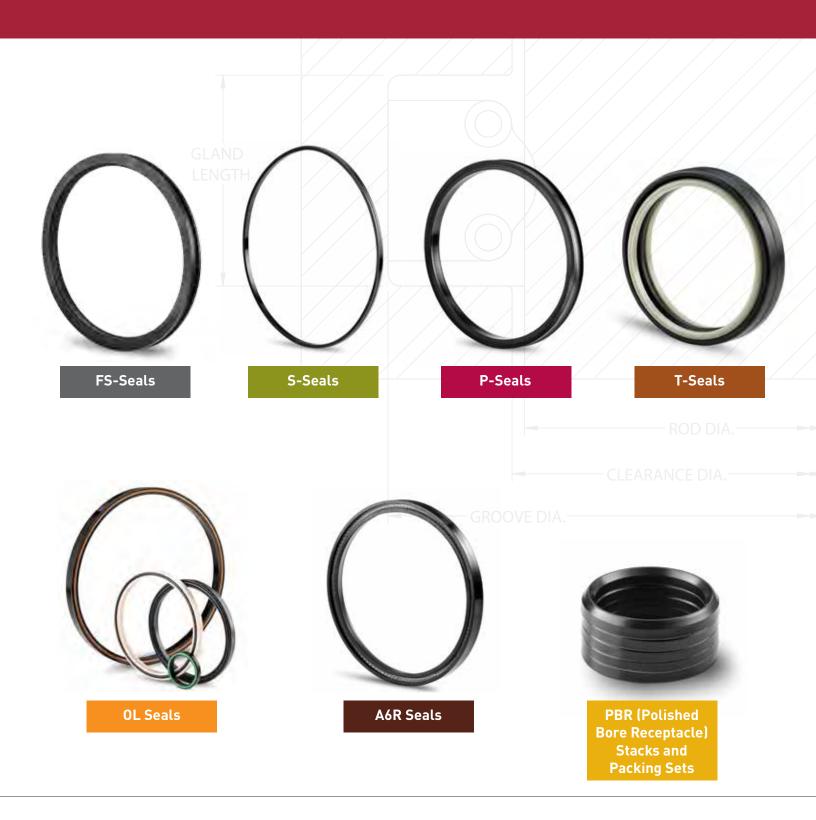
2. Elastomeric Seal Compatibility Matrix: Low Percentages of CO_2 (Celsius)

	Table 9: Elastomeric Seal Compatibility Matrix: Low Percentages of CO2 (Celsius)			
	When No H₂S Is Present	When H ₂ S Is Present		
	-100°C -50°C 0°C 50°C 100°C 150°C 200°C 250°C 300°C	-100°C -50°C 0°C 50°C 100°C 150°C 200°C 250°C 300°C		
Water	-40 NBR 93 -57 NBR-LT 82 -46 HNBR 149 -60 HNBR-LT 250 -34 FKM 93 -18 FEPM 260 -40 FFKM 260 -59 FVMQ 93 -59 PU 93	-40 NBR 65 -57 NBR-LT 82 -46 HNBR 107 -51 HNBR-LT 107 -34 FKM 93 -18 FEPM 260 -40 FFKM 232 -59 FVMQ 65 -59 PU 93		
Amines	-46 HNBR 149 -51 HNBR-LT 121 -18 FEPM 260 -40 FFKM 232 -59 FVMQ 149 -59 PU 93	-46 HNBR 93 -51 HNBR-LT 93 -18 FEPM 260 -40 FFKM 232 -59 FVMQ 93 -59 PU 93		
Bromides	-34 FKM 204 -18 FEPM 232 -40 FFKM 232 -59 PU 93	-34 FKM 204 -18 FEPM 232 -40 FFKM 232 -59 PU 93		
Methanol	-40 NBR 121 -59 NBR-LT 82 -46 HNBR 149 -51 HNBR-LT 121 -18 FEPM 260 -59 FVMQ 149 -59 PU 93	-46 HNBR 93 -51 HNBR-LT 93 -18 FEPM 232 -40 FFKM 232 -59 FVMQ 93 -59 PU 93		

2. Elastomeric Seal Compatibility Matrix: High Percentages of CO_2 (Celsius)

	Table 10: Elastomeric Seal Compatibility Matrix: H	ligh Percentages of CO ₂ (Celsius)			
	When No H ₂ S Is Present	When H ₂ S Is Present			
	-100°C -50°C 0°C 50°C 100°C 150°C 200°C 250°C 300°C	-100°C -50°C 0°C 50°C 100°C 150°C 200°C 250°C 300°C			
Water	-40 NBR 93 -57 NBR-LT 82 -46 HNBR 149 -51 HNBR-LT 121 -34 FKM 93 -18 FEPM 260 -40 FFKM 260 -59 FVMQ 93 -59 PU 93	-40 NBR 65 -70 NBR-LT 82 -46 HNBR 107 -51 HNBR-LT 107 -34 FKM 93 -18 FEPM 260 -40 FFKM 232 -59 FVMQ 93 -59 PU 93			
Amines	-46 HNBR 149 -51 HNBR-LT 121 -18 FEPM 260 -40 FFKM 232 -59 FVMQ 149 -59 PU 93	-46 HNBR 149 -51 HNBR-LT 93 -18 FEPM 260 -40 FFKM 232 -59 FVMQ 93 -57 PU 93			
Bromides	-34 FKM 93 -18 FEPM 232 -40 FFKM 232 -59 PU 93	-34 FKM 93 -18 FEPM 232 -40 FFKM 232 -59 PU 93			
Methanol	-40 NBR 121 -59 NBR-LT 82 -46 HNBR 149 -51 HNBR-LT 121 -18 FEPM 260 -59 FVMQ 149 -59 PU 93	-46 HNBR 93 -51 HNBR-LT 93 -40 FFKM 232 -18 FEPM 232 -59 FVMQ 93 -59 PU 93			

Material Compatibility: Media, Performance, and Temperature— Common Engineered Materials Offered by CDI Energy Products


The ability of a material to resist an attack from aggressive media that would compromise sealability is a critical factor in seal design and material selection. Once materials that satisfactorily meet the media resistance requirements that have been selected, each material can then be evaluated for sealability in various seal configurations, with consideration of the nature of the application environment and service conditions. To perform optimally, the seal must maintain acceptable physical properties and have minimal changes of those properties during the service conditions found in the given application.

However, in some extreme applications, it's actually desirable for seals to be dissolved or degraded after some point in order to be purged or removed from service without disassembling. Considering such scenarios, it's extremely important to know how materials perform under certain environmental conditions. Temperature plays a great role, having a strong influence on chemical reaction rates. In many cases, a proper material compatibility analysis requires a quantitative rather than qualitative approach. Nevertheless, a conceptually qualitative analysis, such as shown in the table below, is useful for "first approximation" screening in choosing a material for an application.

	Table 11: Standard CDI Elastomeric Materials for Engineered Elastomeric Seals for the Oilfield										
	Property	CR	EPDM	FKM	FFKM	HNBR	NBR	FMVQ	PU	FEPM	XNBR
Temperature	°F	-40 to +225	-60 to +300	-20 to +400	-20 to +450	-45 to +300	-40 to +250	-80 to +450	-40 to +200	0 to +450	-30 to +250
Tempe	C°	-40 to +107	-51 to +148	-28 to +204	-28 to +232	-42 to +148	-40 to +121	-62 to +232	-40 to +93	-17 to +232	-34 to +121
	Abrasion resistance	G	G	G	G	E	G	Ρ	E	F	E
е	Concentrated acid resistance	F	G	E	E	G	F	F	Р	E	F
Media Resistance	Concentrated base resistance	F	E	Р	G	G	F	G	Р	E	F
a Re	Oil & fuel resistance	F	Р	E	E	E	E	G	G	G	G
Medi	Water / Steam	F	E	F	G	G	F	F	Р	E	F
-	Aromatic solvents	G	Р	E	E	G	G	G	F	G	G
	Ozone resistance	G	E	E	E	G	Р	E	G	E	Ρ
	Gas Impermeability	G	G	G	G	G	G	Р	G	G	G
mental	Weather resistance	E	E	E	E	G	F	E	F	E	F
Environmental	Flame resistance	G	Ρ	E	E	Ρ	Р	G	Р	G	Ρ
	Resilience	G	G	F	F	G	F	G	F	Р	F
ical	Tear strength	F	G	F	F	G	F	Р	E	G	G
Physical	Compression set	F	G	G	G	G	G	G	Р	F	G
	Electrical	F	G	F	F	G	F	E	E	G	F
	P=poor F=fair G=good E=excellent										

CDI ENERGY PRODUCTS ENGINEERED ELASTOMERIC SEALS AND SEALING SOLUTIONS

FS-Seals

METALLIC SPRING ENERGIZER

Description

FS-Seals are uniquely designed sealing elements that offer excellent sealability in areas where a high degree of seal deflection is necessary. The design features of this seal allow the component to compensate for variations in piping, casing, or large-diameter parts.

The metal garter spring in this design provides pressure-energized antiextrusion capabilities. During operation, the activated features provide an ID-type seal that has proven effective in pressures up to 10,000 psi.

The FS-Seal technology is especially suited for applications where there are large extrusion gaps relative to diameter. The shape of the FS-Seal design allows for a high level of deflection across the full range of operating temperatures, without the risk of gland overfill. Similar to the S-Seal, the FS-Seal construction eliminates the installation problems that can occur when using multiple component seals. FS-Seals are inherently flexible, enabling positive installation in practically any large-diameter gland.

Design Features and Benefits

- Range of elastomeric and spring material combinations
- Pressure-energized
- Can be retrofitted to existing groove
- Ability to seal large or inconsistent extrusion gaps
- Flexible seal for easy installation or field repair
- Handles aggressive chemicals and abrasive oilfield applications
- Large cross-section / diameter ID version of S-Seal
- Standard and custom sizes

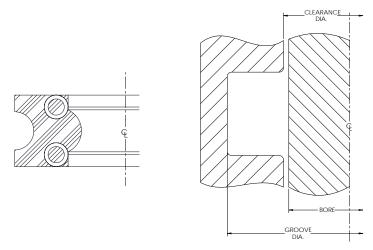
Common Applications and Services

- Casing and tubing hanger
- Stab-in operations
- High-pressure pipelines
- Hydraulic cylinders
- Fluid and gas applications
- Wide ranges of temperature and pressure

Manufacturing and Production Processes

Molding

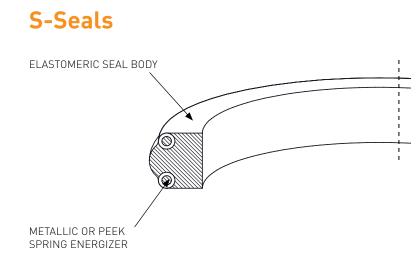
Sizing


- API standard casing sizes
- Custom sizing options

To learn how CDI Energy Products can improve performance in your operations,

please visit our website at CDIproducts.com or submit an inquiry at CDI-Global.Sales@CDIproducts.com

Engineering and Design Considerations



Material Selection

	Commonly Used Elastomeric Jacket Material					
Base Material	Temperat	Service Recommendation				
Dase Material	°F	°C	Service Recommendation			
HNBR	-45 to +300	-42 to +148	Same as NBR and XNBR but with higher heat resistance, enhanced physical properties, and increased chemical resistance. Good for harsh well service (i.e.: H ₂ S, water steam, CO ₂ , and amine corrosion inhibitors)			
NBR	-25 to +250	-31 to +121	Petroleum oils and fuels, water, glycols, silicones			
FEPM (Aflas®)	0 to +450	-17 to +232	Sour petroleum oils and fuels, acids, bases, amines, steam			
Custom Compounds	Custom compounds and blends can be offered upon request. Please contact your CDI Energy Products representative for additional information.					

Commonly Used Metallic Spring Material					
5 1 1 1	Temperat	Service Recommendation			
Base Material	°F	°C			
316 Stainless Steel	-300 to +550	-184 to +287	General service, hydraulics		
Nickel-Based Alloy (Inconel®)	-300 to +800	-184 to +427	Harsh service, NACE MR-01-75		
PEEK Spring	-56 to +260	-48 to +126	Dynamic motion, non-galling, gland friendly		

CDI Energy Products : Elastomeric Seals Engineering and Design

Description

The S-Seal design incorporates garter springs with an elastomeric sealing element, enabling it to withstand large extrusion gaps and high pressures when energized. This integral "phantom" O-Ring design combines the stability of a rectangular cross section with the proven sealability of the O-Ring. The one-piece design found in this version of the S-Seal offers a technically advanced alternative to traditional three-piece seal configurations such as T-Seals or O-Rings with back-ups.

This seal configuration streamlines installation, allowing for convenient field repair and maintenance. Additionally, the S-Seal can easily be stretched into place without splitting or compromising the anti-extrusion elements of the seal.

Our S-Seal seal design has successfully been used in applications with extrusion gaps up to .125" (3.175 mm). A range of material choices are available for a variety of services and temperatures, making this sealing solution ideal for static and HPHT sealing applications.

Design Features and Benefits.

- Replaces common three-piece seal assemblies
- Ease of installation
- Can bridge large extrusion gaps
- Broad range of spec-grade elastomeric materials
- Large selection of available sizes
- Multiple material options for spring elements
- Metallic anti-extrusion spring option provides maximum extrusion resistance in static applications
- Thermoplastic anti-extrusion spring option available for dynamic applications

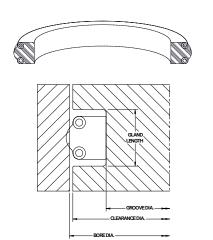
Common Applications and Services

- Static HPHT applications
- Stab-in operations
- Manifolds
- Connectors
- Perforation
- Risers
- BOPs
- Compressors
- Directional drilling
- Wellheads

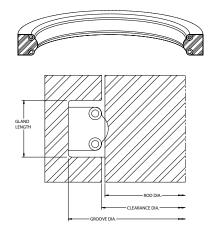
Manufacturing and Production Processes

Molding

Sizing


- Standard AS568B housing sizes
- Custom sizing options

To learn how CDI Energy Products can improve performance in your operations,


please visit our website at CDIproducts.com or submit an inquiry at CDI-Global.Sales@CDIproducts.com

Engineering and Design Considerations

Piston Configuration

Rod Configuration

Material Selection

Commonly Used Elastomer Materials					
B Matacial	Temperat	ure Range			
Base Material	°F	°C	Service Recommendation		
HNBR	-45 to +300	-42 to +148	Same as NBR and XNBR but with higher heat resistance, enhanced physical properties, and increased chemical resistance. Good for harsh well service (i.e.: H ₂ S, water steam, CO ₂ , and amine corrosion inhibitors)		
FKM (Viton®)	-20 to +400	-28 to +204	Petroleum oils and fuels, acids, halohydrocarbons, phosphate esters		
FEPM (Aflas®)	0 to +450	-17 to +232	Sour petroleum oils and fuels, acids, bases, amines, steam		
NBR	-40 to +250	-40 to +121	Petroleum oils and fuels, water, glycols, silicones		
Custom Elastomer Compounds	Custom compounds and blends can be offered upon request. Please contact your CDI Energy Products representative for additional information.				

Spring Option 1: Commonly Used Metallic Materials for Spring					
Base Material	Temperat	Service Recommendation			
Dase Malerial	°F	°C	Service Recommendation		
316 Stainless Steel	-300 to +550	-184 to +287	General service, hydraulics		
Nickel-Based Alloy (Inconel®)	-300 to +800	-184 to +427	Harsh service, NACE MR-01-75		
Phosphorus Bronze	-300 to +500	-184 to +260	Non-galling for slightly dynamic capability (ex: stab in)		

Spring Option 2: Available Specialty Polymeric Material for Spring						
Base Material	Tempera					
	°F	°C	- Service Recommendation			
PEEK	-56 to +260	-48 to +126	Dynamic motion, non-galling, gland friendly			
Custom Plastic Compounds	unds Custom compounds and blends can be offered upon request. Please contact your CDI Energy Products representative for additional information.					

P-Seals

Description

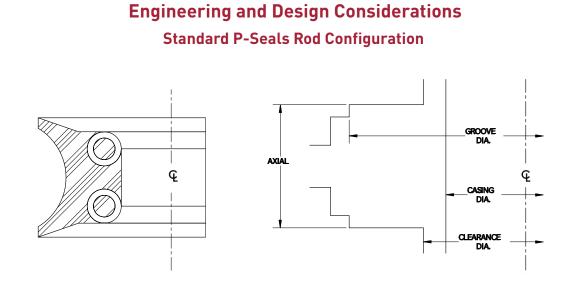
The P-Seal is a one-piece seal design that typically uses molded-in garter spring elements as anti-extrusion devices. The inside diameter is the primary sealing face and uses injected plastic packing in the outer groove to energize the seal. By incorporating anti-extrusion spring elements into the design, anti-extrusion devices are eliminated, reducing the risk of application performance interruption by loose components. Molded-in mesh anti-extrusion rings can be utilized, as per the needs of your application.

Design Features and Benefits

- Bidirectional sealing capabilities
- Extremes of pressure and temperature
- Ability to seal large extrusion gaps
- Designed to seal large tolerances
- found in standard oilfield casingEase of installation due to singular component
- Material selection available for a wide range of wellhead applications
- Available in standard and custom sizes
- Adjustable sealability achieved by use of plastic packing or grease

Common Applications and Services

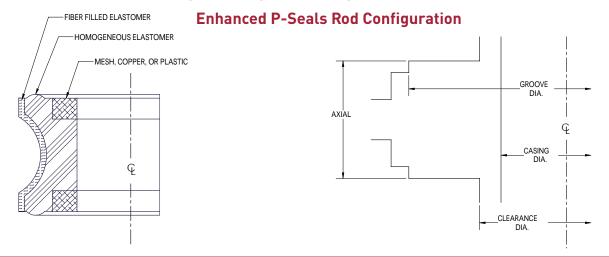
- Casing and tubing hangers
- Wellheads
- Stab-in operations
- High-pressure pipelines
- Hydraulic cylinders
- Fluid and gas applications
- Wide ranges of temperature and pressure


Manufacturing and Production Processes

- Machining
- Molding

Sizing

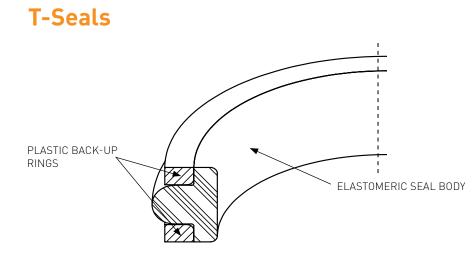
- API standard casing sizes
- Custom sizing options



The standard P-Seal is a one-piece molded design utilizing molded-in garter springs as anti-extrusion devices. This design enhances assembly by eliminating the loose anti-extrusion devices found in other designs. Tooled for common sizes between 4-1/2" and 9-5/8".

Material Selection

Commonly Used Elastomer Materials					
De se Matarial	Temperat	ure Range			
Base Material	°F	°C	Service Recommendation		
NBR	-40 to +250	-31 to +121	Petroleum oils and fuels, water, glycols, silicones		
HNBR	-45 to +300	-42 to +148	Petroleum oils and fuels, water, glycols, silicones		
FKM (Viton®)	-25 to +450	-31 to +232	Petroleum oils and fuels, acids, halohydrocarbons, phosphate esters		
EPDM	-60 to +300	-51 to +111	Water, steam, alcohols, ketones, phosphate esters		
Custom Elastomer Compounds	Custom compounds and blends can be offered upon request. Please contact your CDI Energy Products representative for additional information.				


The EPS style is a three-piece design utilizing a wiremesh or plastic anti-extrusion system along with a buckle-resistant elastomer body. In some applications, a fabric reinforced rubber may be used. This reduces the chance of buckling or breaking the seal when injecting plastic packing around the circumference of the seal.

Commonly Used Fiber Reinforced Elastomer Materials						
Deer Meterial	Temperat	ure Range				
Base Material	°F	°C	Service Recommendation			
HNBR	-45 to +300	-42 to 148	Petroleum oils and fuels, water, glycols, silicones			
FKM (Viton®)	-20 to +400	-31 to +232	Petroleum oils and fuels, acids, halohydrocarbons, phosphate esters			
FEPM (Aflas®)	0 to +450	-17 to +232	Sour petroleum oils and fuels, acids, bases, amines, steam			
NBR	-40 to +250	-31 to +121	Petroleum oils and fuels, water, glycols, silicones			
Custom Elastomer Compounds	Custom compounds and blends can be offered upon request. Please contact your CDI Ene Products representative for additional information.					

Commonly Used Anti-Extrusion Material					
Burn Material	Temperat	ure Range			
Base Material	°F	°C	Service Recommendation		
Stainless Steel Wiremesh	-300 to +800	-184 to +427	Harsh service, NACE MR-01-75		
Bronze Wiremesh	-300 to +500	-184 to +260	Non-galling for slightly dynamic capability (ex: stab-in)		
PA (Nylon®)	-90 to +265	-67 to +129	-90°F to +265°F		

Engineering and Design Considerations

CDI Energy Products : Elastomeric Seals Engineering and Design

Description

T-Seals are characterized by a T-shaped elastomeric cross section with two thermoplastic back-up rings. This seal design offers sealing capable of handling extreme pressures, temperatures, and large extrusion gaps. With dual backup rings surrounding both sides of the flanged, elastomeric cross section, this distinctive design aids in mitigating extrusion in applications where sealing against bidirectional pressure is a key concern.

Suitable for static and dynamic applications, T-Seals are designed to resolve issues in seal extrusion and to prevent the rolling of the seal when operating in reciprocating applications. For applications that previously used an O-Ring and back-up ring combination, the T-Seal can be retrofitted into the existing groove for both piston and rod orientation—optimizing this versatile design to meet your specific application requirements. Offers improved RGD resistance and lower temperature sealing performance due to higher levels of squeeze and gland fill when compared to standard O-Ring designs.

Design Features and Benefits

- Flexible seal and split back-up rings for easy installation and field repair
- Eliminates seal rolling / spiraling
- Bidirectional sealing capabilities
- Compact, condensed design
- Can be retrofitted to existing groove
- RGD resistance

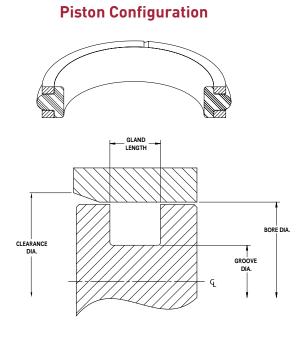
- Extremes of pressure and temperature
- Ability to seal large extrusion gaps
- A broad range of elastomeric and thermoplastic back-up ring combinations
- Handles aggressive chemicals in oilfield applications
- Available in standard and custom sizes

Common Applications and Services

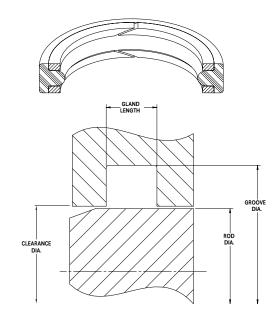
- Surface equipment
- Downhole
- Wellhead
- Valves
- High-pressure pipelines
- Riser systems
- Reciprocating pumps
- Hydraulic cylinders

Manufacturing and Production Processes

- Machining
- Molding


Sizing

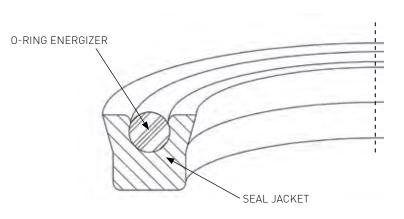
- Standard AS568B housing sizes
- Custom sizing options


To learn how CDI Energy Products can improve performance in your operations,

please visit our website at CDIproducts.com or submit an inquiry at CDI-Global.Sales@CDIproducts.com

Engineering and Design Considerations

Rod Configuration



Material Selection

Commonly Used Plastic Materials						
	Temperat	ure Range				
Base Material	°F	°C	Service Recommendation			
PTFE (Teflon®)	-300 to +400	-185 to +204	Hydrocarbon oils, pneumatic and gases, chemical processes, aggressive chemicals			
PA	-90 to +265	-67 to +129	Limited acid-base resistance, hydrocarbons, broad temperature ranges			
PEEK	-70 to +500	-56 to +260	Aggressive chemicals, broad media, HPTHT environments			
Custom Plastic Compounds	Custom compounds and blends can be offered upon request. Please contact your CDI Ener Products representative for additional information.					

CDI Energy Products : Elastomeric Seals Engineering and Design

OL-Seals

Description

The OL-Seal combines a flexible elastomeric lip-type seal jacket with an O-Ring energizer, offering a solution capable of sealing at high and low pressures. The versatility provided by this symmetrical seal design allows for successful use in both rod and piston applications. The use of an elastomeric jacket and energizer makes the OL-Seal a flexible sealing solution that eases installation, even when stretching may be required.

By filling the seal cavity with an O-Ring energizer, this sealing system becomes a dynamic solution more than able to compensate for fluctuations in system pressures, while increasing sealability. At extremely low pressures the O-Ring acts by increasing the sealing force and enhancing sealability. With increases in system pressure, additional force is applied throughout the sealing mechanism, actuating the seal lips. Once this actuation occurs, the lips of the seal profile mate with the gland surface, creating a positive seal and ensuring sealability.

Design Features and Benefits

- High or low pressures
- Suitable for vacuum
- Suitable for oversized bores and undersized rods
- Good wear characteristics and resistance to abrasion
- Flexibility and ease of installation
- Positive lip actuation
- Wide range of sizes
- Varied material options
- Compact housing
- Can be retrofitted
- Contamination resistance

Common Applications and Services

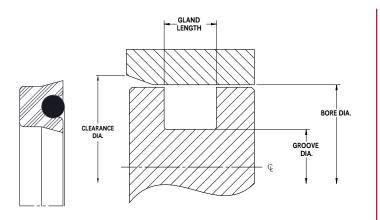
- Downhole tools
- Actuators
- Static and dynamic applications
- Subsea and surface applications

Manufacturing and Production Processes

- Machining
- Molding

Sizing

- Standard sizing available from .125" ID to 32" OD
- Custom sizing



To learn how CDI Energy Products can improve performance in your operations,

please visit our website at CDIproducts.com or submit an inquiry at CDI-Global.Sales@CDIproducts.com

Engineering and Design Considerations

Piston Configuration

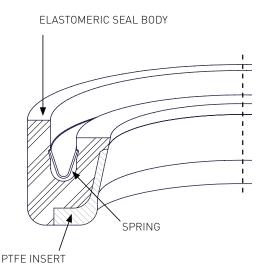
GROOVE DIA.

CLEARANCE DIA.

Design Profiles		
Standard Lip Profile The standard OL Seal profile ensures positive lip contact and sealability when low pressure sealing is required. A square-shaped lip profile gives this design a scraper-styled edge that quickly scrapes away fluids and film that may accumulate during normal operation cycles. The standard profile can be further customized to feature a deep heel.	Standard Lip	Square Lip
B-Lip Profile This profile produces the high unit loading on the lip profile. After installation, stability within the gland is ensured by the rectangular shape of this cross section. The beveled lip of this seal design creates a sharp, wiper-like effect that can easily cut through dense, viscous fluids or film. Stability within the gland is ensured by the rectangular shape of this cross section. The beveled profile can be further customized to feature a deep heel.	Square Lip (Bevel)	B-Lip Deep
Integral The integral OL-Seal design combines the benefits of any of the profile designs into a single-piece assembly. By integrating the energizing element with the seal jacket and profile, the number of components is reduced, easing installation and decreasing the likelihood that the energizer will be dislodged during operation. The integral OL-Seal can be designed with all of the previously mentioned configurations, including the deep heel. Thermoset elastomers are the preferred material family for this configuration.	Integral Deep Standard-Lip	Integral Deep B-Lip

Rod Configuration

ROD DIA.


q

Commonly Used Elastomer Materials for Seal Jacket				
Rase Material	Temperature Range		Service Recommendation	
base Material	°F	°C		
HNBR	-45 to +300	-42 to +148	Same as NBR and XNBR but with higher heat resistance, enhanced physical properties, and increased chemical resistance. Good for harsh well service (i.e.: H ₂ S, water steam, CO ₂ , and amine corrosion inhibitors)	
FKM (Viton®)	-20 to +400	-31 to +232	Petroleum oils and fuels, acids, halohydrocarbons, phosphate esters	
FEPM (Aflas®)	0 to +450	-17 to +232	Sour petroleum oils and fuels, acids, bases, amines, steam	
Polyurethane	-40 to +200	-40 to +93	Certain hydraulic fluids, aromatic hydrocarbons, certain greases	
Polyester-Based TPE	-40 to +250	-40 to +120	Oil and hydrocarbons, where abrasion resistance is needed, solvent resistance	
Custom Compounds	-		upon request. Please contact your CDI Energy or additional information.	

Material Selection

Commonly Used Elastomer Materials for O-Ring Energizer			
De se Matarial	Temperat	ure Range	Compiles Decomposed attice
Base Material	°F	°C	Service Recommendation
NBR	-25 to +250	-31 to +121	Petroleum oils and fuels, water, glycols, silicones
HNBR	-45 to +300	-42 to 148	Same as NBR and XNBR but with higher heat resistance, enhanced physical properties, and increased chemical resistance. Good for harsh well service (i.e.: H ₂ S, water steam, CO ₂ , and amine corrosion inhibitors)
FKM (Viton®)	-20 to +400	-31 to +232	Petroleum oils and fuels, acids, halohydrocarbons, phosphate esters
FEPM (Aflas®)	0 to +450	-17 to +232	Sour petroleum oils and fuels, acids, bases, amines, steam

A6R Seals

Description

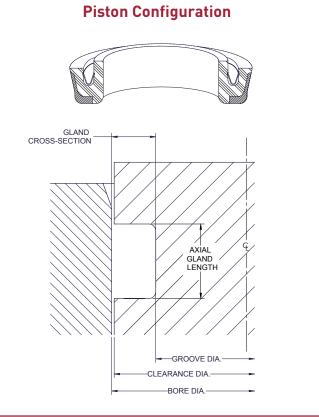
The A6R rod and piston seals are enhanced lip seals that are designed to solve the problem of high friction, wear, and damage of lip seals in rotary and reciprocating applications.

When used in rotary applications, the broad elastomeric contact area prevents the seal from spinning on the static gland surface. Combining this elastomeric design element with the low-friction PTFE wear surface provides integral antiextrusion capabilities, enhancing overall sealbility compared to an all elastomer or all PTFE seal.

Lip seal designs made entirely from elastomers are sometimes susceptible to higher compression set related failures due to the full elastomeric cross section. The A6R seal incorporates a V-shaped metal energizer which provides a flexible seal while maintaining lower permanent set. This along with the asymmetrical design prevents the seal from rolling in reciprocating applications, making the A6R seal an ideal choice in challenging applications where extrusion, compression set, friction, and high seal wear are key concerns.

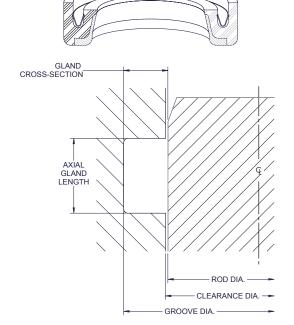
Design Features and Benefits

- High or low pressures
- Good wear characteristics and resistance to abrasion
- Flexibility and ease of installation
- Notable anti-extrusion capabilities
- Wide range of sizes


- Varied material options
- Can be retrofitted
- Contamination resistance
- Low friction characteristics

Common Applications and Services

- Riser systems
- Mud motor
- ESP (electrical submersible pumps)
- Valve stems
- Hammer drills
- Jar and fishing tools


To learn how CDI Energy Products can improve performance in your operations, please visit our website at CDIproducts.com or submit an inquiry at CDI-Global.Sales@CDIproducts.com

Engineering and Design Considerations

Rod Configuration

Material Selection

Standard Elastomer Materials for Seal Jacket				
Base Material	Temperate	ure Range	Service Recommendation	
Base Material	°F	°C	Service Recommendation	
HNBR	-45 to +300	-42 to +148	Same as NBR and XNBR but with higher heat resistance, enhanced physical properties, and increased chemical resistance. Good for harsh well service (i.e.:H ₂ S, water steam, CO ₂ , and amine corrosion inhibitors)	
FKM (Viton®)	-20 to +400	-31 to +232	Petroleum oils and fuels, acids, halohydrocarbons, phosphate esters	
FEPM (Aflas®)	0 to +450	-17 to +232	Sour petroleum oils and fuels, acids, bases, amines, steam	
Custom Compounds	Inds Custom compounds and blends can be offered upon request. Please contact your CDI Energy Products representative for additional information.			

Standard Plastic Materials for Seal Jacket				
Dec. Material	Temperature Range			
Base Material	°F	°C	- Service Recommendation	
PTFE (Teflon®)	-300 to +400	-185 to +204	High capabilities, lower friction, and notable chemical resistance	
Custom Compounds	Custom compounds and blends can be offered upon request. Please contact your CDI Energy Products representative for additional information.			

Metal Spring Material				
Base Material	Temperatu	re Range	Service Recommendation	
Base Material	°F	°C	Service Recommendation	
Stainless Steel	300 to +550	-184 to +287	General service hydraulics	
Cobalt-Based Alloy	-300 to +800	-184 to +427	Harsh service, NACE MR-01-75	

PBR (Polished Bore Receptacle) Stacks and Packing Sets

Description

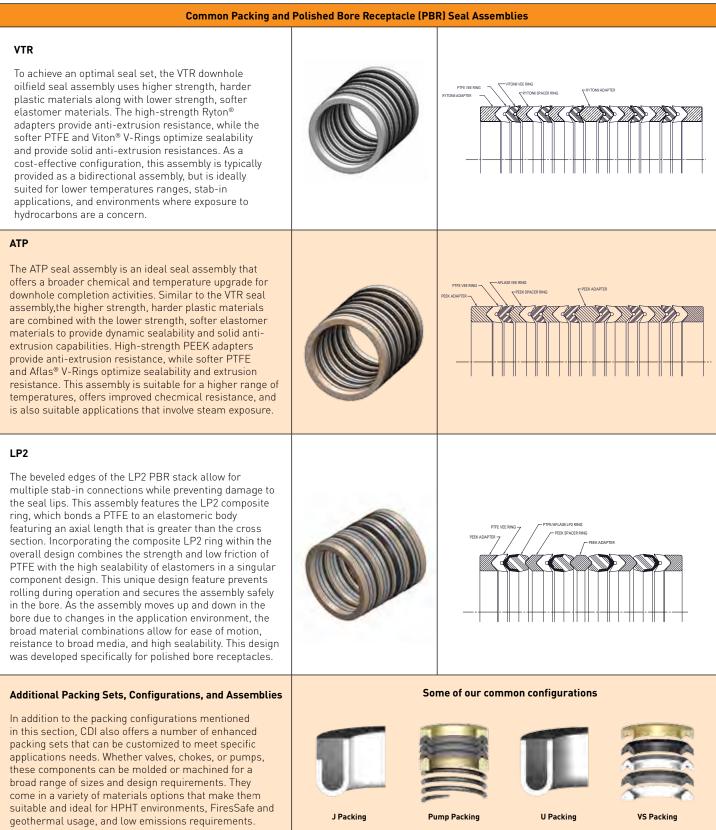
Due to fluctuating temperatures during operation, a typical downhole scenario results in the expansion and contraction of metallic production casing and tubing during naturally occurring thermal cycling. As this process takes place, the casing and tubing increases and decreases axially, resulting in continuous contrary motion and movement of critical sealing elements as they glide throughout the changing annular space.

During these production scenarios, polished bore receptacle seal assemblies (PBR stacks) are used to compensate for the thermal expansion and contraction of the tubing, thus preventing buckling, tool separation, or the damage of metallic elements. Combining contrasting materials in the packing configurations enables this packing assembly to balance dynamic, high pressure sealing in conditions requiring the highest levels of sealabiliy along with excellent anti-extrusion capabilities.

The self-lubricating and high-pressure extrusion-resistant plastic components are complemented by the softer, conformable elastomeric elements offering high sealability in both uphole and downhole pressures. The performance ability of this seal assembly is the result of combining elastomer and plastic components that offer inherent lubricating properties, enabling the sealing elements to survive broad temperature fluctuations and range of motion while providing bidirectional sealing from both directions with redundant seal components for maximum reliability.

Design Features and Benefits

- Wide range of tooling and sizes
- Varied material options—both machined and molded
- Friction characteristics and extrusion resistance can be tailored through material selection
- High or low pressures
- Redundant seal lips
- Bidirectional sealing
- Stab-in capabilities


Common Applications and Services

- PBR (polished / packer bore receptacles)
- Jars and fishing tools
- Stem packing
- Subsurface safety valves
- Reciprocating pump packing

To learn how CDI Energy Products can improve performance in your operations, please visit our website at CDIproducts.com or submit an inquiry at CDI-Global.Sales@CDIproducts.com

Engineering and Design Considerations

Standard Elastomer and Plastic Materials for V-Ring Components				
Base Material	Temperat	ure Range	- Service Recommendation	
Base Material	°F	°C	Service Recommendation	
HNBR	45 to +300	-42 to +148	Same as NBR and XNBR but with higher heat resistance, enhanced physical properties, and increased chemical resistance. Good for harsh well service (i.e.:H ₂ S, water steam, CO ₂ , and amine corrosion inhibitors)	
FKM (Viton®)	-20 to +400	-31 to +232	Petroleum oils and fuels, acids, halohydrocarbons, phosphate esters	
FEPM (Aflas®)	0 to +450	-17 to +232	Sour petroleum oils and fuels, acids, bases, amines, steam	
FFKM	-20 to +450	-28 to +232	Sour petroleum, acids, bases, MTBE, ketones	
Rubber Coated Fabrics	-60 to +500	-51 to +260	Stronger, more dimensionally stable compared to homogenous elastomer materials	
Fiber-Filled Elastomers	0 to +500	-17 to +260	Stronger, more dimensionally stable compared to homogenous elastomer materials, and can achieve tighter tolerances	
PTFE (Teflon®)	-300 to +400	-185 to +204	High capabilities, lower friction, and notable chemical resistance	
Custom Compounds			upon request. Please contact your CDI Energy or additional information.	

Material Selection

Standard Plastic Materials for Adapters			
Base Material	Temperat	Temperature Range	
	°F	°C	Service Recommendation
PTFE (Teflon®)	-300 to +400	-185 to +204	High capabilities, lower friction, and notable chemical resistance
PEEK	-56 to +260	-48 to +126	Dynamic motion, non-galling, gland friendly
Custom Compounds	Custom compounds and blends can be offered upon request. Please contact your CDI Energy Products representative for additional information.		

Metal Spring Material					
Base Material	CDI Compound #	Temperat	ure Range	Service Recommendation	
		°F	°C		
Stainless Steel	316 SS	300 to +800	-184 to +427	General service hydraulics	
Cobalt-Based Alloy	Elgiloy	-300 to +400	-184 to +204	Harsh service, NACE MR-01-75	

Custom Engineered Elastomer Products and Product Manufacturing Capabilities

In addition to the common engineered elastomeric seals and sealing solutions presented in the previous sections of this guide, our global engineering team and technical specialists are able to work with you to address specific application and performance needs. Made from high-performance elastomeric, composite, and metal materials that will more than adequately address your application challenges, our sealing solutions leverage advanced manufacturing capabilities to produce critical components for your existing prints and designs. For a custom solution to solve your application challenges, our global team of specialists will partner with you to design, engineer, and manufacture a fully customized, comprehensive solution.

Bonded Seals and Bonded Sealing Solutions

• Metal-to-rubber seals

Sliding sleeves

Closing sleeves

- Rubber-to-rubber seals
- Plastic-to-rubber seals
- Rubber-to-wiremesh
- Logging pads

Packing (Fabric Reinforced and Homogenous Rubber)

- Hydraulic V-packing
- Pump packing
- Heavy duty V-packing
- Valve stem packing

Lip Seals (Fabric Reinforced and Homogenous Rubber)

- Block vees
- U-cups
- Piston cups

- Plugs
- Bridge plugs

BOP Components

• Outer seals

Inner seals

Ram blocks

- Wiper plugs
- Cement plugs

Packers

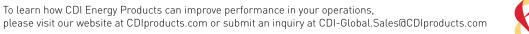
- Casing
- Hanger
- Geothermal
- Rubber packer

Spring-Energized Seals

- Optiseal[®] spring energized seals
- A6R composite springenergized seals

ENERGY

For specific sizes, and capabilities of any of these components, contact your account manager or send an inquiry to CDI-Sales.Global@CDIproducts.com


To learn how CDI Energy Products can improve performance in your operations, please visit our website at CDIproducts.com or submit an inquiry at CDI-Global.Sales@CDIproducts.com

Compound List

Homogeneous Elastomers

NBR	Recommen	Recommended Service: Petroleum oils and fuels, water, glycols, silicones			
Nitrile	Not Recom	mended: Ketones, esters, amines, halohydrocarbons			
Comp#	Hardness +/-5	Features			
405 406 407 9001001 408 9001541 9002191 409XR 9000931	45a 60a 70a 80a 80a 80a 90a 90a	General service, high quality, medium-high ACN, sulfur cure compounds			
408P	80a	Harsh service, medium ACN peroxide cure			
407HAP 409HAP 9000241	70a 90a 90a	Harsh service, high ACN peroxide cure			
408NB 409NB	80a 92a	Non-black, high ACN, peroxide cure compounds			
407LT	68a	Low-temperature service, low ACN, peroxide cure compound			

HNBR Hydrogenated Nitrile	Recommended Service: Same as NBR and XNBR but with higher heat resistance, enhanced physical properties, and chemical resistance. Good for harsh well service (i.e.: H ₂ S, steam, CO ₂ , and amine corrosion inhibitors) Not Recommended: Strong acids, halohydrocarbons			
Comp#	Hardness +/-5	Features		
806	65a	Highly saturated, medium ACN, peroxide cure compound		
801-85	85a	Explosive-decompression-resistant HNBR compound for gas service		
9140061 803-80 9002271	70a 80a 80a	Fully saturated, medium ACN, peroxide cure compounds		
804-75 804-85	75a 85a	Highly saturated, high ACN, peroxide cure compounds		
807 808 809 9002301	70a 80a 90a 90a	Fully saturated, medium-high ACN, peroxide cure compounds		
808LT	78a	Low-temperature, medium ACN, peroxide cure compound		
886	86a	Tough, internally lubricated for low friction and wear. Ideal for reciprocating pumps		
887 888	89a 95a	High-strength HNBR, excellent high-temperature replacement for urethane and Hytrel® lip seals		

Appendix 1

FKM Fluoroelastomer		ded Service: Petroleum oils and fuels, acids, halohydrocarbons, phosphate esters mended: Ketones, amines, strong bases	
Comp#	Hardness +/-5	Hardness Features	
906	65a	General purpose copolymer compound	
9020111 907SP 908SP 9020481 9025121 909SP 909-95	70a 72a 80a 80a 90a 92a 96a	High quality, specification grade, incorporated cure copolymer for low compression set	
907LS 908LS 909LS	70a 80a 92a	High quality, low-shrink compounds that allow the use of NBR tooling on small and medium C/S parts (i.e.: V-rings, U-cups)	
909HV 9021251	90a 90a	High-molecular-weight polymer for improved explosive decompression resistance	
907B 909B	75a	High quality, incorporated cure terpolymer with higher fluorine content	
901-75 9020271 901-90 9021631	75a 80a 90a 90a	Harsh service tetrapolymer with higher fluorine content, peroxide cure	
901LT 9021441	75a 75a	Low-temperature, peroxide cure	
FHP-1	65a	High-purity fluoroelastomer for semiconductor applications – cream color	

FEPM Fluoro-olefin elastomer	Recommended Service: Sour petroleum oils and fuels, acids, bases, amines, steam Not Recommended: Halohydrocarbons				
Comp#	Hardness +/-5	Features			
904-80 9020311 904-90 904-95	80a 80a 90a 96a	Harsh-service Aflas® 100H polymer			
900-75 900-90	75a 90a	road chemical resistance, Viton Extreme® Perfluoro-olefin			
902-75 902-90	75a 90a	Enhanced processing base-resistant fluoroelastomer for amine-containing lubricants. Improved bondability over Aflas 100H polymer			

FFKM Perfluoroelastomer	Recommended Service: Sour petroleum, acids, bases, MTBE, ketones Not Recommended: Alkali metal solutions				
Comp#	Hardness +/-5	- Fosturos			
PES-75 PES-90	75a 90a	Extreme chemical resistance, fully fluorinated			
PSS-75 PSS-90	75a 90a	L'Extreme chemical resistance, fully fluorinated			

Appendix 1

Perfluoroether- Silicone	Recommended Service: High heat and extreme chemical resistance. Good for static seals with proper anti-extrusion devices for high pressure Not Recommended: MTBE, dynamic sealing applications		
Comp#	Hardness +/-5	Features	
623	70a General service, black color		

XNBR Carboxylated Nitrile	Recommended Service: Same as NBR but with improved thermal physical properties and abrasion resistance Not recommended for new applications, as HNBRs offer better overall properties				
Comp#	Hardness +/-5	Features			
509LX	90a	General service, sulfur cure compound with good abrasion resistance			
507P 509P	75a 92a	Harsh service, peroxide cure compounds			

VMQ Silicone	Recommended Service: Hot air, alcohols, CO ₂ , vegetable oils, electrical			
	Not Recomm	Not Recommended: Ketones, silicones, most petroleum oils and fuels		
Comp#	Hardness +/-5	Features		
623	70a	70a General service, black color		

FVMQ Fluorosilicone	Recommended Service: Hydrocarbons, alcohols, hot air, ozone, chlorinated hydrocarbons Not Recommended: Brake fluids, ketones			
Comp#	Hardness +/-5	Features		
607	80a	80a General service compound		

EPM-EPDM Ethylene-propylene	Recommended Service: Water, steam, alcohols, ketones, phosphate esters Not Recommended: Petroleum oils and fuels, diester fluids, aromatic hydrocarbons				
Comp#	Hardness +/-5	Features			
104	88a	"Y267" type geothermal steam compound			
107 108	70a 80a	General service, sulfur cure compounds			
107P 108P	70a 80a	Harsh service, peroxide cure compounds			

CR Polychloroprene	Recommended Service: Freon®, ammonia, silicate esters, hydraulic fluid Not Recommended: Petroleum oil and fuels, ketones, acids, steam, phosphate esters, halohydrocarbons					
Comp#	Hardness +/-5	Fosturoc				
207 208	70a 80a	General service compounds				

Reinforced Elastomers

Coating Polymer	Comp#	Description
NBR XNBR HNBR	416 417 419 410 429 447 449 548 550 828 847 848 850	Soft NBR / Cotton fabric – black Medium NBR / Cotton fabric – black Hard NBR / Cotton fabric – green Hard NBR / Cotton fabric – black Hard NBR / Aramid fabric – green Medium NBR / Polycotton – black Hard NBR / Polycotton – black Medium XNBR / Polycotton – brown XNBR / Aramid fiber – black Medium HNBR / Aramid fabric – black Medium NBR / PTFE / Polycotton – gray Medium HNBR / Polycotton – black HNBR / Aramid fiber – black
FKM	918 928 951 959	Medium FKM / Cotton fabric – black Medium FKM / Aramid fabric - black FKM / Mineral / Aramid fiber - black FKM / Aramid fiber - black
FEPM	923 950	Medium Aflas® / Aramid fabric - black Aflas® / Aramid fiber - black
EPDM	117	Medium EPDM / Cotton fabric – olive

Note:

All media recommendations are merely guidelines and can be affected by operating temperature. Unless specified, the service temperature is based on a medium-durometer compound of that series in an air environment. Part geometry can have an effect on the actual service temperature rating. The CDI Energy Products compound list is an outline of compounds used by CDI Energy Products to fabricate parts; many other materials are available. For more information on availability of these or any other materials, please contact your distributor or customer service.

Technical Report

ISO / NORSOK Certified Elastomer Materials

To better serve our customers manufacturing high performance valves and wellhead equipment for the oil and gas industry, CDI Energy Products has evaluated several CDI elastomeric seal compounds to ISO 23936-2.

ISO 23936:2011, Non-Metallic Materials in Contact With Media Related to Oil and Gas Production, Part 2: Elastomers has replaced the un-balloted NORSOK M-710, Annex–B, R3 draft. Testing was conducted to Annex A: Ageing of Elastomeric Materials and to Annex B: Rapid Gas Decompression (RGD). The compounds selected are extensively used in sealing solutions provided by CDI Energy Products.

The testing was contracted with an independent laboratory, Akron Rubber Development Laboratory Inc. (ARDL), located in Ohio, USA.

Annex A:

This procedure is used to qualify elastomer compounds for service in liquids and gases representative of the intended application environment. The test parameters that can be selected are the composition of the hydrocarbon liquid phase, the gas phase, and three test temperatures. The test temperatures used are intended to be above the recommended service temperature of the polymer used to compound the material. These are selected based on API 6A or ISO 10423 temperature classifications in table A.6. Based on changes in physical properties in the elastomer at different intervals, an Arrhenius plot of estimated service life can be generated.

AS568-222 O-Rings are aged in the test chamber at the specified temperature and media at 10 MPa (1450 psi). At specified intervals the chamber is depressurized and test samples are removed and then the chamber is repressurized with media, and aging is continued until the specimens no longer meet the standard acceptance criteria or time is expired.

Phase	Composition	Test Temperature	Test Pressure	Duration	
Liquid	60% As Specified (Aromatic or Non-Aromatic)	3 Intervals Specified,	10 MPa (1450 psi)		
Gas	30% As Specified (Sweet or Sour)	All Above Maximum Service Temperature For The Polymer		As Specified For Each Temperature	
Water	10% Deionized				

Annex B:

This procedure is used to gualify elastomeric materials for service in gas environments that could subject elastomeric materials to rapid gas decompression (RGD) or explosive decompression (ED). AS568-325 O-Rings were molded from standard compounds; the specimens were saturated in a pressurized methane/carbon dioxide environment, and then subjected to 8 decompression cycles over a period of 7 days. The O-Rings were then evaluated to the rating system outlined in the ISO 23936-2, Annex-B standard.

Mol %	Composition	Test Temperature	Test Pressure	Duration
10	CO ₂	100°C	15 MPa	7 days
90	CH ₄	(212°F)	(2176 psi)	

The performance of the compounds is summarized in the grid below.

CDI	_	Annex A: Chemical Aging		
Compound	Description	Test Parameters	Acceptance Criteria	
803-80	80a HNBR – Resilient	A.5 Sour Multiphase A.6 Non-ISO / API	Tested	
809	90a HNBR – Oilfield Service	A.5 Sour Multiphase A.6 Non-ISO / API	Tested	
809LT	90a HNBR – Low Temp	A.5 Sour Multiphase A.6	Scheduled	
801-85	85a HNBR – ED Resistant	A.5 Sour Multiphase A.6 Non-ISO / API	Tested	
900-92	92a FEPM	A.5 Sour Multiphase A.6 API-X	Scheduled	
904-92	92a FEPM	A.5 Sour Multiphase A.6 API-X	Scheduled	
901-90	90a FKM-2 – Peroxide Cure	A.5 Sour Multiphase A.6 API-X	Tested	
909HV	90a FKM-1 – Bisphenol Cure	A.5 Sour Multiphase A.6 API-X	Tested	
909LT	90a FKM-3 – Low Temp	A.5 Sour Multiphase A.6 API-X	Tested	
9021581	92a FKM	A.5 Sour Multiphase A.6 API-X	Scheduled	
9021602	92a FKM – Low Temp	A.5 Sour Multiphase A.6 API-X	Scheduled	
408	80a NBR – Sulfur Cure	A.4 Sweet Multiphase A.6 API – U,V	Tested	
408LT	80a NBR – Low Temp	A.4 Sweet Multiphase A.6 API – U,V	Tested	
409XR	90a NBR – Sulfur Cure	A.4 Sweet Multiphase A.6 API – U,V	Tested	
9003010	90a NBR – ED Resistant	A.4 Sweet Multiphase A.6 API – U,V	Scheduled	
PES-90	90a FFKM – High Temp	A.5 Sour Multiphase A.6 API-X	Scheduled	
PLT-90	90a FFKM – Low Temp	A.5 Sour Multiphase A.6 API-X	Scheduled	

Per ARDL Test Reports PN102808, PN103020, PN103335, PN1034363, PN104363, PN105110, certification according to ISO 23936-2:2011, Annex-B applies to CDI grades listed above. More detailed test information is available upon request from CDI Energy Products.

CDI-TR002GL-1214-R03-US

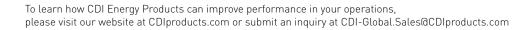
Technical Report

API 6A, Appendix-F Immersions

To better serve our customers manufacturing high performance downhole and wellhead equipment for the oil and gas industry, CDI Energy Products has evaluated several CDI elastomeric and thermoplastic seal compounds using the immersion testing procedure specified in API 6A, Appendix F (also known as ISO 10423:2009).

The compounds selected are extensively used in sealing solutions provided by CDI Energy Products.

The testing was contracted with independent laboratories, including MERL in the UK and Akron Rubber Development Laboratory Inc. (ARDL) located in Ohio, USA.


Appendix F1.13.5.2:

This procedure is used to evaluate polymer compounds for service in liquids and gases representative of the intended application environment. The test parameters that can be selected are the composition of the gas/liquid phase and the test temperature. The test media is determined by the appropriate API 6A Material Class. The test temperature used corresponds to the API 6A Temperature Classes. However, API allows a bespoke media, temperature, pressure, and/or duration to be specified by the end user.

Dog-bone or dumbbell specimens per ASTM D412 (elastomer) D-638 (thermoplastics) or D-1708 (PTFE) are aged in the liquid phase of the test chamber at the specified temperature at 6.9 MPa (1000 psi) for a standard exposure period of 160 hours. The percent change of the physical properties of the aged and un-aged specimens are reported. Acceptance criteria will be specified by the end user or the seal manufacturer based on the intended application.

Test Temperature	Standard Test Pressure	Standard Duration		
Typically the Upper Operating Temperature or Bespoke	6.9 MPa (1000 psi)	160 hours		

API 6A Material Class		Gas Phase	Liquid Phase		
AA/BB	General Service	5% CO_2 / 95% CH_4			
CC	General Service	80% CO ₂ / 20% CH ₄	Kerosene + 5% De-ionized H ₂ O		
DD/EE	Sour Service	10% H ₂ S / 5% CO ₂ / 85% CH ₄			
FF/HH	Sour Service	10% H ₂ S / 80% CO ₂ / 10% CH ₄			
Bes	poke	As Spe	ecified by User		

Appendix 3

API 6A Temperature Classification	Op	Operating Range °F			Operating Range °C			
к	-75	То	+180	+60	То	+82		
L	-50	То	+180	-46	То	+82		
Р	-20	То	+180	-29	То	+82		
R	+74	То	+74	+23	То	+23		
S	0	То	+150	-18	То	+66		
Т	0	То	+180	-18	То	+82		
U	0	То	+250	-18	То	+121		
V	+35	То	+250	+2	То	+121		
X	0	То	+350	-18	То	+177		
Y	0	То	+650	-18	То	+343		
Bespoke	As Specified by User							

CDI (Compound	Media	Temp	∆ H Pts	Δ M %	∆ ∨ %	∆ T %	∆ E %	Δ M50 %	Δ M100 %	Visual
803-80	80a HNBR	DD/EE	155°C	-11.8 i	+12.2	+16.6	-28.4	-16.9	-17.8	-12.8	no damage
809	90a HNBR	DD/EE	155°C	-6.2 i	+8.7	+10.7	-9.8	-12.7	-10.8	+4.1	no damage
809	90a HNBR	FF/HH	150°C	-5.6 a	+12.1	+13.8	-9	-21	-11	+14	no damage
901-75	75a FKM	DD/EE	155°C	-5.4 i	+2.9	+6.6	-26.8	-12.1	-9.8	-3.7	no damage
901-90	90a FKM	DD/EE	155°C	-5.6 i	+2.4	+5.1	-15.1	-4.8	-6.2	-8.1	no damage
703	PPS Filled PTFE	FF/HH	202°C	-10.2 d	+4.0	+4.4	-8.6	-18.1	-8.9	-3.2	no damage
711	Carbon Filled PTFE	FF/HH	202°C	-8.2 d	+2.1	+3.0	-22.3	0	-20.7	-17.6	no damage
716	Graphite Filled PTFE	FF/HH	202°C	-6.8 d	+1.2	+2.2	-8.7	-12.4	-4.3	+1.5	no damage
754	Carbon Filled PEEK	FF/HH	202°C	-4.0 d	+3.0	+2.8	-44.8	+2			no damage

Hardness (a=Type-A,d=Type-D,i=IRHD), Mass, Volume, Tensile, Elongation, Modulus @ 50%, Modulus @ 100% and visual are evaluated. More detailed test information is available upon request from CDI Energy Products.

CDI-TR00xxxxx-1014-R01-US

To learn how CDI Energy Products can improve performance in your operations, please visit our website at: CDIproducts.com; or talk with our experts at your regional office.

In-depth Global Solutions

CDI Energy Products is a designer and manufacturer of custom plastic and elastomeric products, seals, and ancillary metal components. As part of the global group Fenner, our multiple locations enable us to partner with clients worldwide to produce unique, high-performance solutions for the energy industry.

DISCLAIMER: The descriptions, design, performance information, and recommended uses for the products described herein are based generally on our design and manufacturing experience, product testing in specific conditions, and industry standards. The foregoing information is for general guidance only and does not constitute a guaranty or warranty of design or warranty of performance. Every effort has been made to ensure the information provided is accurate and up to date. However, the information provided herein is provided "as-is" and we make no representations or warranties of any kind, express or implied, with respect to the information provided. We reserve the right to make product changes from time to time, without prior notification, which may change some of the information provided herein. All warranties regarding the products described herein will be given in writing at the time of sale of such products. Each purchaser of such products must decide if the products are suitable to the intended use of such purchaser.

Tuff Breed, CDI Energy Products, and Sintermesh are registered trademarks of CDI Energy Products, LLC. Tefzel®, Delrin®, Vespel®, Viton® and Teflon® are registered trademarks of DuPont used under license by CDI Energy Products. All other trademarks are property of their rightful owners. All rights reserved. No part of this brochure may be duplicated unless under the express written consent of CDI Energy Products. AFLAS is a registered trademark of the Asahi Glass Co., Ltd