IBI Annual Forum
March 28, 2017

Martha Garcia
Kaiser Permanente

Kevin Curry
Fraser Gaspar, PhD
Katie Zaidel, MEM
ReedGroup, Ltd.

The Missing Link Measuring Medical and Pharmaceutical Costs Along the Disability Continuum

SESSION OVERVIEW

- Describe new research showing how medical costs vary by day of disability.
- Explain how diagnosis and treatment are critical for understanding medical cost estimates.
- Illustrate how shortening disability durations can save significant medical costs even when the majority of costs occur at the start of the disability episode.
- Share information about what employers can do to help control disability costs, including use of recovery estimates at the point of care.

UNDERSTANDING THE COST OF DISABILITY TO EMPLOYERS

- 889 MM illness-related absence days each year*
- \$443B in illness-related absence and lost productivity costs each year*
- Employees with an illness-related absence accounted for nearly 60% of total worker health care and disability payments.**

"The consequences of work disability vary according to which stakeholder's perspective is being considered, but from every perspective they are **enormous**."

— Bardos et al. (2015)

^{*} IBI Full Cost Estimator

^{**} Gifford 2017

TRADITIONAL COST OF DISABILITY EQUATION

- Cost equation inputs typically include:
 - Wages
 - Benefits
 - Lost productivity
 - Replacement labor
- Inputs are multiplied by length of disability
- Medical cost information typically not considered, or is presented as a flat rate

Example:

Disability Cost = [Salary per day + Benefits per day + Lost productivity per day] x [Days on disability]

THE MAJORITY OF DISABILITY COSTS ARE MEDICAL AND COSTS CHANGE THROUGH TIME

- The majority of costs for a disability episode are from medical costs (Goetzel et al. 2003)
 - 71% of costs for physical conditions is medical costs
 - 53% of costs for mental conditions is medical costs
- Medical cost as a percentage of total costs decrease through time (Hashemi 1997, Hashemi 1998)
- IBI (2016) found ~35% of medical costs in workers' compensation claims occurred in first 6 months after injury

MISSING LINK: RESEARCH FOCUS

In order to get a full and accurate picture of disability absence costs, we need to quantify *medical costs by disability episodes and understand how medical costs change through time*.

Key Research Questions:

- 1) What are the medical costs for each day during a disability episode and how does treatment impact cost trajectories?
- 2) What are the potentially avoidable medical costs?

WHAT ARE THE MEDICAL COSTS FOR *EACH DAY*DURING A DISABILITY EPISODE?

DATA SOURCES

STD Claims

925k claims639k employees7.6k diagnoses

- STD Start Date
- STD RTW Date
- Diagnosis
- Age
- Gender

Outpatient Claims

148 MM records

- Service Date
- Diagnosis
- Procedure
- Medical Costs

Inpatient Claims

3 MM records

- Service Date
- Diagnosis
- Procedures
- Medical Costs

Drug Claims

60 MM records

- Service Date
- Drug Name
- DEA Class
- Cost

Truven Marketscan Health and Productivity Management (HPM) and Commercial Claims and Encounters (CCAE) Databases

METHODOLOGY: DEFINING DISABILITY EPISODE AND COSTS

- STD first absence date range: 1/1/2007 to 12/31/2013
- Medical record date range: 1/1/2007 to 12/31/2014
- Medical records were grouped to a specific disability episode
 - 1 week before first absence date
 - 1 month after return to work (RTW) date
 - Identified procedures and diagnoses during timespan from the medical claims.
 - All medical events and costs were assigned the day relative to the date of first absence.
- 886,110 STD claims with 41 million associated medical events
- Calculated disability medical costs
 - Removed medical costs not associated with primary diagnosis
 - Total gross, eligible payments

CONDITION #1

MENISCUS DISORDERS, KNEE (ICD-9-CM: 836.0, 836.1, 836.2)

- Knee injury is the second most common workrelated accident.
- Non-surgical treatment:
 - Rehabilitative exercise and activity modification.
- Surgical treatment:
 - Removal or repair of the damaged section.
 - Arthroscopy is the standard of care.

VIEWING MEDICAL EVENTS ALONG THE DISABILITY TIMELINE

CASE: 50 YEAR OLD MALE, 64 DAYS ABSENT, \$9K MEDICAL COSTS

--Surgical Treatment: Arthroscopic Meniscectomy--

Days from First Absence Date

IT'S ABOUT TIME... EXPOSING CASE/COST VARIATION

EXAMPLE: 50 YEAR OLD MALES

Case: 64 days absent, \$9K medical costs (Arthroscopic Meniscectomy)

Case: 37 days absent, \$3K medical costs (Non-Surgical)

Case: 16 days absent, \$4K medical costs (Arthroscopic Meniscectomy)

Case: 178 days absent, \$16K medical costs (Arthroscopic Meniscectomy)

TREATMENT DETERMINES MEDICAL COST

MENISCUS DISORDERS

Treatment	Count	25 th %ile Cost	Mean Cost	75 th %ile Cost
Arthroscopic meniscectomy	10,973	\$4,085	\$7,409	\$8,588
No treatment	2,149	\$47	\$1,259	\$993
Non-surgical treatment	1,891	\$649	\$3,831	\$4,739
Meniscus repair	180	\$5,938	\$11,695	\$14,939
Meniscus repair AND arthroscopic meniscectomy	145	\$5,738	\$11,721	\$14,039
Total Knee Replacement		· ,	. ,	· ,
	142	\$8,565	\$25,538	\$36,482
Open AND arthroscopic meniscectomy	6	\$5,729	\$6,841	\$7,943
Open meniscectomy	2	\$8,982	\$14,373	\$19,764

Employers don't typically have access to treatment information...

TREATMENT DETERMINES MEDICAL COST

MENISCUS DISORDERS

Treatment	Count	25 th %ile Cost	Mean Cost	75 th %ile Cost
Arthroscopic meniscectomy	10,973	\$4,085	\$7,409	\$8,588
No treatment	2,149	\$47	\$1,259	\$993
Non-surgical treatment	1,891	\$649	\$3,831	\$4,739
Meniscus repair	180	\$5,938	\$11,695	\$14,939
Meniscus repair AND arthroscopic meniscectomy	145		\$11,721	\$14,039
Total Knee Replacement				
	142	\$8,565	\$25,538	\$36,482
Open AND arthroscopic meniscectomy				
Open meniscectomy	2	\$8,982	\$14,373	\$19,764

Employers don't typically have access to treatment information...

ARTHROSCOPIC MENISCECTOMY

ARTHROSCOPIC MENISCECTOMY + NON-SURGICAL TREATMENT

ARTHROSCOPIC MENISCECTOMY + NON-SURGICAL TREATMENT + MENISCUS REPAIR

ARTHROSCOPIC MENISCECTOMY + NON-SURGICAL TREATMENT + MENISCUS REPAIR

CONDITION #2

CARPAL TUNNEL SYNDROME (ICD-9-CM: 354.0)

- 5% of the US population is affected by carpal tunnel syndrome (Hooker 2007)
- Non-surgical treatments, examples:
 - Nonsteroidal anti-inflammatory drugs
 - Corticosteroid injections
- Surgical treatment is open carpal tunnel release
- During the period from 1981 to 2005, the average annual incidence of carpal tunnel release surgery was 109 per 100,000 (Gelfman 2009)

TREATMENT DETERMINES MEDICAL COST

CARPAL TUNNEL SYNDROME

Treatment	Count	25 th %ile Cost	Mean Cost	75 th %ile Cost
Non-Surgical Treatment	8,828	\$1,436	\$4,505	\$5,710
Carpal Tunnel Release	1,261	\$3,921	\$8,923	\$9,091
No Treatment	895	\$17	\$626	\$420

CARPAL TUNNEL SYNDROME

WHAT ARE THE POTENTIALLY AVOIDABLE MEDICAL COSTS?

IDENTIFYING POTENTIALLY AVOIDABLE COSTS USING THE OPTIMUM RECOVERY DURATIONS

Optimum Duration = recommended disability durations that represent the physiological healing time for uncomplicated cases

- Developed by ReedGroup using a multi-step process including data analysis, clinical peer-review, and Medical Advisory Board approval
- Isolates the physiological recovery time, absent of psychosocial factors
- Matched to disability episode by diagnosis and procedure

The Potentially Avoidable Cost (PAC) is the difference in costs between the optimum RTW date and the actual RTW date.

IDENTIFYING POTENTIALLY AVOIDABLE COSTS USING THE OPTIMUM RECOVERY DURATIONS

Optimum Duration = recommended disability durations that represent the physiological healing time for uncomplicated cases

- Developed by ReedGroup using a multi-step process including data analysis, clinical peer-review, and Medical Advisory Board approval
- Isolates the physiological recovery time, absent of psychosocial factors
- Matched to disability episode by diagnosis and procedure

The Potentially Avoidable Cost (PAC) is the difference in costs between the optimum RTW date and the actual RTW date.

CALCULATING POTENTIALLY AVOIDABLE COSTS (PAC)

- Typical calculation: PAC = \$13,000 \$7,400 = \$5,600
- PAC must account for case characteristics

Case 1:

DATE

Duration = 174 days

Young

TO WORK

DATE

No comorbidities

Not hospitalized

Case 2:

Duration = 174 days

Old

Depression + hypertension

Hospitalized

Total Medical Costs = \$13,000

Potentially Avoidable Costs = \$5,600

2017 IBI Annual Forum

RETURN TO WORK DATE 25

CALCULATING POTENTIALLY AVOIDABLE COSTS (PAC)

- Typical calculation: PAC = \$13,000 \$7,400 = \$5,600
- PAC must account for case characteristics

DATE

2017 IBI Annual Forum

26

INVERSE PROBABILITY WEIGHTING (IPW) TO ACCOUNT FOR PROBABILITY OF RTW AT OPTIMUM DURATION

- Developed inverse probability weights for each subject using a log-linear regression model, outcome = Disability Days
- High inverse probability weights mean under/over prediction
- Potential covariates: age, gender, recurrence, salaried, # of unique ICDs/procs, hospitalized, surgical procedure, comorbidities, location (% college graduates, population density), health plan, industry, ...

WEIGHTING CASES WHERE INVENTIONS COULD REDUCE DURATIONS AND COSTS

- Developed log-linear regression model predicting medical costs by full duty days and covariates
- Weighted by inverse probability weights
- For individuals who had a duration above optimum, calculated PAC as the difference in predicted medical costs at:
 - Observed duration
 - Optimum duration
- Summed all PACs

Subject	Predicted Medical Costs at Observed Duration	Predicted Medical Costs at Optimum Duration	PAC	
1	\$5,000	\$4,000	\$1,000	
2	\$10,000	\$4,500	\$5,500	
3	\$20,000	\$5,000	\$15,000	
		Total PAC	\$21,500	

POTENTIALLY AVOIDABLE COSTS FOR MENISCUS DISORDERS AND CARPAL TUNNEL

Meniscus Disorder:

- Non-surgical treatment (n = 1,734) = \sim \$900K or \$529 per case
- Athroscopic meniscectomy (n = 10,257) = ~\$9.5MM or \$928 per case
- Meniscus repair (n = 160) = \$0

Total potentially avoidable cost savings = ~\$10.4 million

Carpal Tunnel:

- Non-surgical treatment (n = 8,719) = \sim \$2.4MM or \$277 per case
- Carpal tunnel release (n = 1,256) = \sim \$1.2MM or \$957 per case

Total potentially avoidable cost savings = ~\$3.6 million

POTENTIALLY AVOIDABLE COSTS FOR COMMON DIAGNOSES AFFECTING U.S. WORKERS

PAC BY DIAGNOSIS

DIAGNOSIS	N	MEDIAN (OPTIMUM)	25 th %ile	Mean	75 th %ile	PAC/ Case
Depressive Disorder (311)	15,609	43 (28)	\$338	\$3,405	\$2,775	\$830
Lumbago; low back pain (724.2)	15,143	39 (14)	\$491	\$6,023	\$4,406	\$1,573
Dislocation of Knee; meniscus tear (836.0)	12,874	45 (31.5)	\$2,866	\$6,452	\$7,893	\$303
Anxiety (300.00)	12,659	40 (7)	\$279	\$2,336	\$1,762	\$851
Lumbar Disc Displacement (722.10)	11,437	63 (32)	\$2,259	\$16,174	\$17,682	\$3,250
Major Depressive Disorder, single episode (296.20)	11,059	57 (28)	\$513	\$4,173	\$4,256	\$1,168
Uterine Leiomyoma, unspecified (218.9)	10,334	44 (28)	\$6,742	\$12,912	\$16,217	\$1,927
Obesity, morbid (278.01)	8,992	31 (35)	\$15,740	\$26,403	\$30,409	\$770
Inguinal Hernia, unilateral (550.90)	7,896	35 (25)	\$3,450	\$6,884	\$8,504	\$135
Major Depressive Disorder, recurrent episode (296.33)	7,483	68 (28)	\$785	\$6,204	\$7,003	\$1,874

POTENTIALLY AVOIDABLE MEDICAL COSTS ACROSS THE ENTIRE U.S. WORKFORCE

POPULATION OF 55 MILLION U.S. WORKERS WITH STD BENEFITS

Up to \$6.5 Billion

Potentially Avoidable Medical Costs

Calculation:

- Total US Employees Eligible for STD Absence:
 - 55MM (40% of Total US Workers have STD benefits)
- STD Claim Rate per Diagnosis:
 - # of STD cases for each diagnosis / Total employees eligible for STD absence
- Potentially Avoidable Costs per Diagnosis:
 - Average medical costs from Optimum to RTW Date for each diagnosis

Total US Workers from the IBI Full Cost Estimator % of US Workers with STD benefits from BLS Claim Rate per diagnosis calculated from Marketscan HPM database

RESEARCH SUMMARY

- Medical costs vary by day of disability with most costs incurred at the beginning of a disability episode.
- Efforts to shorten durations can still save medical costs after a disability starts.
- Diagnosis, treatment, and other case information are important for quantifying accurate absence durations and medical costs.
- Cost trajectory models could be used to estimate medical costs when employers don't have access to the employee's medical data

UNDERSTANDING THE VALUE TO EMPLOYERS

ACTIONABLE ITEMS FOR HEALTH PLANS

CONSIDERATIONS FOR EMPLOYERS

- Include medical costs in analysis of disability benefits programs
 - Can't manage what you can't measure
 - Wage replacement, benefits, lost productivity, AND disability-related medical costs
- Include disability-related outcomes in analysis of wellness programs
- Ensure cases are managed using evidence-based guidelines and durations
 - Delivers appropriate care in a timely fashion
 - Example: A cohort of workers compensation claims in "managed care" had reduced disability durations and total expenditures by 50% in comparison to an unmanaged cohort *
- Design medical / disability benefit plans to work together
 - Encourages desired behaviors
 - Ensure costs and time-off for preventive care are well covered
- Ensure right balance between high-deductible health plans and care utilization
- Review return-to-work policies
 - Encourage modified duty and workplace accommodations

^{*} Bernacki et al. JOEM (1996); Green-McKenzie et al. JOEM (1998)

KP VALUE PROPOSITION

Deliver on the promise of integrated health & productivity management, by aligning products & services that improve workforce health & productivity.

- Less fragmentation = less costs and better clinical outcomes, earlier RTW
- Program elements
 integrated and
 complimentary =
 synergized and
 compounded impacts to workforce health
- Less administrative costs for employers
- KP Integrated Care
 System provides KP
 members best health and
 wellness

Integration of service and program component data provides a unique opportunity to measure and report on the impact on total health and productivity

WHAT IS KAISER PERMANENTE DOING?

DISABILITY STRATEGY

KP will support customers in reducing the duration and total costs of employee disability through efficient administrative processes, responsive service and best in class clinical tools and reporting.

Key Tactics:

- Active provider role in workforce management as part of treatment plan.
- Tools in HealthConnect, including the ReedGroup Disability Duration Guidelines and an integrated tool (Activity Rx) for consistent documentation and link to MD Guidelines
- Training and support for all providers lead by IDM MD
- Expand ReedGroup's MDGuidelines in Occ Health, Non-Occ Health & FMLA

CONTACT INFORMATION

Kevin Curry
SVP, National Practice Leader
ReedGroup, Ltd.
kcurry@reedgroup.com
303-407-0690

Martha Garcia
CA License od84548
Senior Program Manager
Kaiser Permanente
martha.f.garcia@kp.org
818-557-6093

Fraser Gaspar, PhD, MPH
Epidemiologist
ReedGroup, Ltd.
fraser.gaspar@reedgroup.com
720-456-4413

Katie Zaidel, MPH

Data Research Scientist

ReedGroup, Ltd.

kzaidel@reedgroup.com

720-440-6960

APPENDIX

RESEARCH STRENGTHS AND LIMITATIONS

Strengths:

- Large, integrated dataset
- Multiple components (outpatient, inpatient, pharmaceuticals)
- Multiple employers and regions
- Ability to tie to physiological optimum durations

Limitations:

- Inherent noise in medical data
 - Coding to high level
 - Missing data
- Per day costs do not control for severity or other confounding factors that may affect both duration and medical costs

FUTURE RESEARCH

- Evaluate how the adherence to ACOEM's treatment guidelines affects disability durations and medical costs.
- Refine evaluation of chronic conditions by linking multiple disability episodes.
- Operationalize cost model to make it available to a wider audience (web-based tools).