
DESIGN GUIDANCE

CMDB
Design Guidance

Oct 2020

Introduction

2

Welcome!
In this guide, you’ll find practical advice on how to design and deploy your Con-
figuration Management Database (CMDB). We’ll cover overall design principles,
specific implementation steps, and best practices for rolling out and maintaining
your CMDB. By following this guidance, you’ll maximize the business value of your
CMDB, get better results faster, and avoid common pitfalls.
This guide is not a marketing document. It assumes you already know the value
of a CMDB and are looking to get started on implementation. If you do need a
better understanding of the benefits of a CMDB or want help explaining these
benefits to your organization, please talk to your ServiceNow account
representative.
One word of advice. Some people worry that implementing a successful CMDB is
a complex—or even overwhelming—task. It isn’t. CMDB implementations typically
fail because people aren’t clear on their objectives or try to go for a “big bang”
approach. If you take a structured “crawl, walk, run” approach, you’ll begin to
see benefits very quickly.
That’s what this guide will help you to do. Let’s get started.

DESIGN GUIDANCE

A CMDB refresher
Before we dig into design principles, implementation steps, and operational best
practices, let’s take a moment to review the basics. What is a CMDB, and how
does it work? Although this guide assumes that you know the value of a CMDB,
it’s important to clearly understand its role. This will help you to take full advantage
of your CMDB while avoiding the consequences of poor implementation.

The purpose of a CMDB
The purpose of a CMDB is to provide accurate and reliable information about
digital services and the infrastructure that supports them. In essence, it is the
content management system (CMS) for ITIL service configuration
management—formerly service asset configuration management (SACM).
Now that we’ve got the formal definition out of the way, let’s tackle a common
misperception. Because the CMDB is a configuration management database,
people often assume that its primary purpose is to support change management.
However, the CMDB’s true purpose is to help you deliver data-driven business
outcomes, both within IT and more broadly across the business. It has little or no
value if it is just a master data repository—to create value, you have to do
something useful with the data.
Let’s look at a common scenario: a service outage. An application isn’t responding,
and hundreds of users are affected. How do you figure out what’s wrong and
get the service back up and running quickly? Has someone upgraded the
application recently? Is it the server, or is there a problem with a database
halfway around the world? Is there a network problem? So many possibilities,
and so little time. Without a CMDB, you don’t even know the application version,
which server it’s running on, or which databases it’s talking to. You spend hours
gathering information—assuming that you can find it—and meanwhile the clock
is ticking. At this point, the value of a CMDB becomes painfully obvious. It gives
you instant access to the information you need to quickly resolve the service
issue, including infrastructure relationships, service topologies, change histories,
software versions, and more.
This is just one example. A CMDB can help you to drive positive business outcomes
across a wide range of operational processes. It can also support and improve
many other business areas—for example, it can help you to reduce service
delivery costs, maximize the ROI of your application portfolio, and accelerate
time-to-market for new services.

Configuration items, attributes, and relationships
Exactly what type of information does a CMDB contain? Here’s a quick recap:
• As we just said, a CMDB provides accurate and reliable information about

digital services and the infrastructure that supports them.
• To do this, the CMDB stores information that describes components—“things”

—in your operational environment that are involved in the delivery of digital
services. Each component is represented as a configuration item (CI).

• Each CI has multiple attributes that contain specific information about the
component the CI represents. CI classes are arranged in a class hierarchy,
with each subclass extending the attributes of its parent class. For example,
a Linux Server CI class inherits all of the attributes of its parent Server class and
adds Linux-specific attributes.

• CIs also have relationships. For instance, an application can run on a server,
or a web server can depend on an upstream load balancer. The CMDB stores
these relationships between CIs, along with the relationship type (depends on,
runs on, etc.).

3

DESIGN GUIDANCE

• Note that these relationships are not the same as the class hierarchy—the
hierarchy specifies inheritance between CI classes, whereas relationships are
between CI instances (e.g. web server “X” depends on load balancer “Y”).

• CIs can be broadly grouped into two main categories—infrastructure CIs and
service CIs.

• Infrastructure CIs represent capabilities provided by physical or logical
components such as servers, routers, application software, cloud resources,
and so on.

• Service CIs represent digital services and are supported by infrastructure CIs.
In ServiceNow, there are three types of service CIs, representing business,
application, and technical services.
- A business service supports a business capability—such as managing

customer orders—and is consumed by business users. Business services are
typically underpinned by one or more application services (i.e. a business
service can include multiple applications).

- An application service is a full application stack—for example, a stock
inventory system that supports the customer order management business
service described above. It isn’t just the application—it’s all of the
distributed components that make the application work. This is what we
typically think about when we talk about a digital service.

- A technical service is a technical capability that underpins one or more
application services. For instance, multiple application services—including
the stock inventory system above—could all use a common storage service.

Four more things to remember about configuration items
We’ve already talked about infrastructure and service CIs. Here are four more
things about CIs that you need to know before you start out on your CMDB journey.
• CIs must have a unique name that doesn’t change. The name needs to be

unique so it can be differentiated from other CIs, and it mustn’t change so
the CI can be tracked over time. For example, using a hostname to uniquely
identify a server is fine provided that the hostname doesn’t change. On the
other hand, it’s a bad idea to use an IP or MAC address to identify a server as
this can easily change—for example, if you’re using dynamically assigned IP
addresses or need to swap out a network interface.

• CIs must have relationships. An infrastructure CI represents a component that
needs to be managed to deliver or support a service. In other words, each
infrastructure CI has a direct or indirect relationship with one or more service
CIs. For example, a service could have a “depends on” relationship with a
web server CI, while the web server in turn has a “runs on” relationship with a
Linux server CI.

• CIs and assets are related, but they’re not the same. For instance, consider a
physical server that you have purchased. This is tagged and recorded as an
asset. Once the server becomes operational, a CI record is created in the
CMDB to represent the operational capability provided by the server. The CI
—not the asset record—is then referenced in incidents, change requests, and
so on. CIs can also exist without corresponding assets—for example, a cloud-
based server is represented in the CMDB as a CI, but there is no corresponding
asset record since the server does not physically exist.

• Don’t create CIs for things you can’t configure or monitor. Ask yourself whether
a CI could be the subject of an incident or change request. If the answer is
no, then don’t create the CI. More specifically, don’t create CIs for passive
datacenter components such as racks. The CMDB is there to help you deliver
digital services—it isn’t a datacenter infrastructure management (DCIM) tool.
These types of CIs will just clutter up your CMDB, requiring additional time and
effort to manage without providing any significant value. Keep in mind that
once a CI has been created it will always be a CI. 4

DESIGN GUIDANCE

Service mapping
Now, let’s talk briefly about service maps. As previously mentioned, service CIs
represent digital services and are supported by infrastructure CIs. Understanding
the relationship between service CIs and supporting infrastructure CIs is critically
important. For instance, it helps you to diagnose the root cause of service issues.
A service map in the CMDB captures these relationships, showing which CIs
support the service and how they are related to other CIs.
Of course, the CMDB already captures relationships between infrastructure CIs,
so how are service maps different?
To explain, a service map is a collection of relationships and CIs that represents
how a specific application service is delivered. It’s a subset of the CIs and relation-
ships in the CMDB.
Let’s revisit the “web server X depends on load balancer Y” example. In fact,
many different web servers might depend on the load balancer Y—web servers
A, B, C, D, and X, for instance. However, only web server X is involved in delivering
a specific service. While dependencies may exist with the other four web servers,
they are used by completely different services.
In this case, the service map only includes the X to Y dependency relationship. In
general, a service map only includes the CIs and relationships that are involved in
the specific service, showing how the service flows across your operational
infrastructure.
You have probably come across the terms “horizontal” and “vertical” discovery.
Horizontal refers to populating all of the point-to-point relationships between
CIs—for example, discovering all web servers and load balancers and their
dependencies. This gives you a view of how your infrastructure is configured, as
previously described in “Configuration items, attributes, and relationships” above.
Vertical refers to creating a service map by taking a vertical cut of CIs and
relationships that represent the end-to-end service.

The CMDB, Service Graph, and the Common Service Data Model
As a member of the ServiceNow community, you may have heard about Service
Graph and the Common Service Data Model (CSDM). If so, you’re probably
wondering what this means for your CMDB.
Service Graph is ServiceNow’s next-generation system of record. Historically, the
CMDB has focused on managing infrastructure, assets, and their relationships.
However, ServiceNow customers now want a consistent, data-driven approach
to managing the entire digital lifecycle, including planning, application develop-
ment, deployment, performance, cost, business processes, and other areas.
Service Graph provides this by implementing the CSDM, a comprehensive data
model that covers the complete digital lifecycle. You can think of the CSDM as
Service Graph’s data schema, in the same way that the CMDB has a data schema.
Here’s the good news. As we said, Service Graph is an evolution of the CMDB. Both
Service Graph and the CSDM are backwards compatible with the CMDB, so none of
your CMDB investment will be lost. In fact, as Service Graph continues to evolve, it will
make your CMDB easier to manage and give you powerful new capabilities.
Service Graph and the CSDM also provide enhanced data governance—pre-
scriptive guidance on how to populate data in Service Graph. Even if you’re not
planning to use the full capabilities of Service Graph today, we strongly recommend
that you follow this same guidance when implementing your CMDB. This will
reduce risk and improve the quality of your CMDB, and it will also position you to
take full advantage of Service Graph in future. The information provided in this
document is aligned with this guidance.

5

DESIGN GUIDANCE

Configuration%20items,%20attributes,%20and%20relationships

What about DevOps?
While DevOps is driving fundamental changes in the way IT organizations deliver
digital services, DevOps teams still need visibility of their operational environment.
In fact, they face an even bigger challenge than traditional development teams.
They often have to deliver multiple software releases every day while minimizing
service issues and still ensuring appropriate governance. And, as the name
implies, they need to bridge the gap between development and operations,
creating a unified whole. The need for a dynamic, accurate CMDB is greater
than ever.
This document is not intended to address these issues—it’s designed for IT organi-
zations starting out on their CMDB journey. However, ServiceNow does provide
comprehensive solutions for DevOps that seamlessly extend ServiceNow’s CMDB
capabilities. With these solutions, DevOps teams can ensure effective governance
without compromising agility and speed, create real-time visibility of microservice
architectures, identify the root cause of service failures, manage CI/CD pipeline
quality and performance—including organizational performance—and more.
If you would like further information about ServiceNow’s DevOps capabilities,
please talk to your ServiceNow account representative.

DESIGN GUIDANCE

6

CMDB business and
organizational principles
Now that we’ve recapped the basics—and hopefully given you some insights
into other areas such as Service Graph—let’s talk about the business and
organizational principles that will maximize your opportunity for CMDB success.

Identify areas where your CMDB can deliver business value
As we’ve already said, if your CMDB is just a master data repository, it has limited
value. A CMDB delivers business value, so it needs to support both the strategic
objectives of your business as a whole and the tactical goals of your IT organization.
This means focusing on the things that matter to your business.
Many organizations struggle with the right amount of configuration management.
Often, they try to take an all-encompassing approach. Inevitably, this turns out to
be too expensive and time-consuming—no one is willing to spend millions and wait
years for a result. Too little configuration management is just as bad. Without
sufficient information, you’re unable to properly support your business needs and
deliver meaningful improvements. Your CMDB will end up being regarded as an
expensive and worthless white elephant.
So, using a Goldilocks metaphor, how do you avoid the hot and cold porridge
and go straight for the one that’s just right? Don’t assume you know what’s just
right. Engage with business stakeholders to identify areas where your CMDB can
make a significant difference. In general, look for initiatives that will improve
productivity, reduce costs, or increase employee satisfaction—these types of
initiatives usually have the biggest business traction.
For example, are you being hit with big penalties for software license non-
compliance? Or are you having too many service outages? If so, which services
are affected and what’s the impact on productivity? Are your employees fed up
because their issues are bouncing around between IT support teams? Perhaps
you’re starting a cloud migration and need to know which services to move
first—and how to move them. This isn’t a comprehensive list; you’ll find your own
opportunities and challenges that you can address with your CMDB.
Again, remember you’re not trying to boil the ocean. Don’t spend a huge
amount of time identifying every possible use case. Come up with a top ‘N’ list
and prioritize it. Things to consider when prioritizing include:
• Quantified benefits—for example, how much money will you save?
• Amount of effort—what’s the return on investment and do you have

the resources?
• Timeline—will this deliver a quick win for your business?
• Risk—how complex is it, what could go wrong, and what are the unknowns?
• Support from the business—is someone asking for this and are they willing to

go to bat for it?
If you’re looking for an executive sponsor for your CMDB initiative, you may also
want to prioritize use cases that deliver specific benefits for your target sponsor.
One last word on this—you may be tempted to draw up a comprehensive
configuration management plan (more on that in a minute) before you engage
the business. The choice is yours, but consider this. Until you have business
alignment, that next level of detail is likely to change and be wasted. You need
to give your business enough information to make decisions—and you have to
have confiden in that information—but you don’t need to have everything
planned up front.

7

DESIGN GUIDANCE

Think about data and processes
As we said at the start, the role of a CMDB is to provide accurate and reliable
data about digital services and the infrastructure that supports them. In some
cases, this data alone delivers value—for example, providing an inventory of
deployed software licenses. However, you create much more value when you
use this data to help drive and automate business processes. Sticking with the
software asset management example, it’s interesting to know what software is
deployed, but it’s even more useful to be able to reconcile these licenses with
your purchased license entitlements—or to automatically reclaim licenses so you
can reuse them.
Obviously, the role of your configuration management team is to provide the
data that fuels these processes. However, unless these processes exist and have
an owner, you’re wasting your time. Identify process owners and work with them
to define a solution that combines data and processes—and use ServiceNow to
automate these workflows. That’s what ServiceNow excels at, and it’s how you’ll
maximize the value of your configuration data. And, if you don’t want to build
the workflows yourself, work with the process owner to identify resources that can
build them for you.
You’ll also be asked to participate in strategic technology projects. It’s important
to devote resources to these projects early on so you can assess any changes
that are needed to your configuration management capabilities—for example,
additional CIs, new data sources, or enhanced reporting capabilities. This is
referred to in configuration management parlance as “project tailoring”. You’ll
need to feed these requirements back into your prioritized list of configuration
management initiatives, making it a living roadmap rather than a static to-do list.

Organizing for success
Now that you have initial business alignment on what you’re going to do, it’s time
to plan how you’re going to do it. We’re not talking about technical execution
here (that comes next). Instead, let’s look at the organizational and planning
aspects of successfully launching your CMDB.
We’ll start with governance. Some organizations formalize their configuration
management governance structure by creating a Configuration Control Board
(CCB), in much the same way that many IT organizations have a Change Advisory
Board (CAB). Creating a CCB does promote success, but it’s a significant
undertaking that is, quite frankly, better suited to large organizations with mature
and extensive configuration management processes. If you’re just starting out on
your journey, creating a CCB may be too big a hurdle—and many IT organizations
never create a CCB at all.
So, what’s the alternative to creating a CCB? How do you start out lean and still
achieve success? There are two key elements:
• Clearly define roles and responsibilities, not just within your configuration manage-

ment team, but across the business. Get alignment on this, and make sure that
the business is going to support you. For example, it’s no use having everyone
nod when you say you need a business owner—get a name and a commitment.

• Create a Configuration Management Plan (CMP). Think of this as your program
blueprint. This needs to be comprehensive, but it also needs to be flexible. There’s
no point locking yourself into a three-year program in minute detail—you’re
going to need to update and evolve your plan as business priorities change.

Let’s look at each of these points in turn.

8

DESIGN GUIDANCE

Defining roles and responsibilities
Think about how you want to distribute your configuration management processes.
Do you want a central team to handle everything, or do you plan on having
individual teams? For example, will your storage team look after their own
configuration management? Or do you want a hybrid model, with distributed
teams feeding into a central team?
Here are some things to consider before making this decision:
• If you have a centralized team, you’re still going to have to engage many

subject matter experts. This is particularly true if you are dealing with on-premises
infrastructure and plan to populate your CMDB manually (as opposed to auto-
mating discovery with ITOM Visibility). This requires strong project buy-in from
your stakeholders and heavy project management. Even if you do automatically
discover your infrastructure, you’ll still need to engage subject matter experts
to validate that the deployed infrastructure matches the intended design.
Otherwise, as we said before, all you have is a master data project with no
business outcomes.

• Distributed teams do have advantages. With a number of small, distributed
teams, each team can make quick decisions and take responsibility for
resolving issues. And, because each team is also a CMDB client—they use the
CMDB data—they are best positioned to prioritize what data goes into the
CMDB. And, if you are using discovery, the burden on these teams can be
quite light since the CMDB is updated automatically.

• Many ServiceNow customers opt for a hybrid model. Even with discovery,
distributed teams often don’t have all the expertise needed to maintain their
slice of the CMDB. For example, functions such as security span your entire IT
infrastructure—and it’s unrealistic to expect each team to have its own security
expert. The same thing goes for monitoring, software asset management, and
many other functions that depend on the CMDB. A hybrid model that
combines centralized core competencies with the domain expertise of
distributed teams often provides the best balance, and it also ensures process
consistency and uniform governance.

Creating and maintaining a Configuration Management Plan
As with any major initiative, you need a clearly defined, structured and document-
ed plan to succeed. In the case of configuration management, this is referred
to—unsurprisingly—as a Configuration Management Plan (CMP). This needs to
be a top priority once you have initial business agreement on your goals and
objectives and have built a prioritized list of configuration management
initiatives.
Here are some examples of things that your CMP should include:
• Purpose: Why have you created the plan and how do you intend it to be used?
• Goals and objectives: What are you trying to accomplish as per your agree-

ment with the business? Provide a list of well-defined goals and associated
success criteria.

• Scope: What does the plan cover? For example, is it just for production
environments, or do you also intend to provide configuration management
for development and test?

• Roadmap: What will you deliver, and when?
• Applicable policies, standards, and processes: Which policies, standards and

processes will you follow as you execute your configuration management plan?
• Roles and responsibilities: Document roles and responsibilities you have defined.

This needs to cover your configuration management team, as well as any
roles you interact with—for example, application owners or business owners.
A RACI matrix is a good way to do this.

9

DESIGN GUIDANCE

• Governance: What are your governance processes? As already mentioned,
you don’t necessarily need to have a Configuration Control Board, but you
do need some mechanism for making decisions and ensuring that things stay
on track.

This isn’t a comprehensive list. You’ll want to add other things such as communi-
cations and training strategies, verification, and audit processes, how you respond
to data integrity issues, and so on. Your plan should be sufficiently complete that
someone else can pick it up and understand how you do configuration manage-
ment—both your current state and your planned future state. However, don’t
overcomplicate your plan unnecessarily. If you build in too much detail, your
plan will become inflexible, and you’ll end up making major revisions every time
there’s a new business requirement. Remember, your top priority is to deliver
business value, not to spend your time buried in documentation.
One last point on your CMP. This is a perfect place to clearly define your termino-
logy. This is extremely important since you need an agreed common language
to talk about configuration management. Otherwise, you’ll end up having
misunderstandings, which will inevitably lead to misaligned expectations and
poor execution.
If you’re looking for more inspiration for your CMP, you’ll find a sample CMP outline
in Appendix A. Obviously, you’ll need to tailor this to your own specific needs, but
it’s a good checklist of the things you need to consider.

10

DESIGN GUIDANCE

CMDB design principles
Now let’s shift gears and talk about how to design your CMDB. How do you decide
what information to store in your CMDB, and how do you structure that information?

Design with the end state in mind
Put simply, if you don’t know where you’re going, you’re never going to get there.
Create a clear picture of what you want to achieve and align your design with
this target. Obviously, this includes the type of configuration data you’re going to
manage, but it’s more than that. Ultimately, this data has to be useful and under-
standable. In fact, this is probably the single most important success criterion.
Think about who—or what—will use this data. For example:
• Does it need to flow into other ServiceNow processes? While these processes

are designed to work out of the box with the CMDB, you still need to ensure
the data meets your specific requirements. For instance, how fast do you
need to discover infrastructure changes to support Event Management—
do you have a relatively stable environment with infrequent changes, or is
it highly dynamic?

• If people are using the data directly, how does it need to be visualized? For
instance, all screens and reports need to be easily understandable and have
a similar design. And each field must have a single defined purpose—don’t
change the meaning of fields depending on the context.

Align your data with your use cases
Of course, to design for the end state, you need to collect the right data. This
may seem obvious, but your data needs to support your desired outcomes—the
goals and objectives you agreed to with your business.
What exactly do we mean by aligning your data with desired outcomes? Here’s
an example. If your top priority is to reduce software costs, you’ll want to collect
information about your deployed software applications. It doesn’t make sense to
try to map your services in this case. What would you do with service maps? On
the other hand, if you want to migrate services to the cloud, service maps are
critical—they show you what components need to move, and they help you to
avoid breaking services when you move them.
Make a list of the CIs and relationships that you need, along with the specific
attributes that support your use case. Once you have this list, figure out where
you can get the corresponding data. Again, this may seem obvious, but it will
help you to focus your data gathering strategy. For instance:
• What information can you collect directly from your IT environment? You can

discover this type of data using ServiceNow® ITOM Visibility. This includes
infrastructure configuration, infrastructure relationships, and service maps.

• Which information do you need to bring in from third-party systems? For
example, if you are working on a security use case, you might want to enrich
CIs with information from vulnerability scanners. You can import this type of
data using Integration Hub ETL, either by creating your own integration or
using an existing integration from the ServiceNow® Store.

• What information isn’t discoverable or available from third-party systems? You’ll
need to set up processes to collect this data manually and keep it up to date.
One example of this type of data is organizational information. For instance,
who owns a specific service?

At this point, also decide which CI attributes need to be put under change
management. Obviously, discovered attributes and attributes imported from third-
party systems don’t need to be put under change management from a pure
configuration management perspective—the data is what it is and no one can
update it manually in the CMDB. 11

DESIGN GUIDANCE

However, there may be separate operational change management processes
associated with this data—for example, someone may need an approved change
request to upgrade a software application. In these cases, you should be
prepared to track changes to associated attributes—the application software
version in this case—so that other teams can detect unplanned or unauthorized
changes.
That leaves non-discoverable attributes: for example, the business owner of a
particular digital service. Be selective when you decide which of these needs to
be under change management from a configuration management perspective.
Only choose those that are important since each attribute under change
management creates additional work.

Out-of-the-box vs. custom CI classes
The ServiceNow CMDB comes with a rich set of out-of-the-box CI classes. Wherever
possible, use these out-of-the-box classes as is—you’ll save significant effort and
simplify upgrades. Also keep in mind that these CI classes are designed to work
seamlessly with other ServiceNow apps, so when you use out-of-the-box CIs, you
have access to the full power of these apps.
However, you may come across cases where out-of-the-box CIs aren’t sufficient
—for instance, if you have a custom application or want to enrich CIs with data
from third-party sources. In this case, you have two options: create a new CI
class or subclass an existing out-of-the-box CI class. Which is the best approach?
In general, subclassing an existing CI class is the preferred approach. Why? Because
you can still manage the new CI class at the superclass level. For example, let's
assume you took the Linux Server CI class and created a new Embedded Server
class to represent servers that are embedded in IoT devices. These servers might
have additional attributes, such as shock tolerance or orientation (we’re making
this up). By defining the new Embedded Server CI class as a subclass of Linux
Server, any app that can manage a Linux server can also manage this embedded
server. It just won’t know about the new attributes.
Of course, that still doesn’t fully answer the question. For example, is it better to
subclass the Linux Server class or its parent Server class? The answer is… it depends.
If the embedded server behaves like a Linux server and you want to manage it
like a Linux server, then subclassing the Linux Server class is the right approach.
On the other hand, if it really isn’t a Linux server but just shares a few unique
attributes with a Linux server—say less than 30%—then subclassing the Server
class is probably a better idea.
In general, choose an appropriate level in the class hierarchy when subclassing—
one that provides appropriate superclass management while limiting the number
of irrelevant attributes. If you take this approach, you should almost never have
to create entirely new CI base classes—in extreme cases, you should still be able
to subclass the existing out-of-the-box Application or Hardware base classes.
One note of caution. Make sure that you really need a subclass. For instance, we
talked about subclassing if you have a custom application. You may need to do
this in some cases, but if all you need to know is that this application is running on
a server, the number of application instances, the location, and who is responsible
for the application, then you can do this using the existing Application base class.
Implementation tip: You can easily subclass existing CI classes using the CMDB’s
CI Class Manager. Visit https://docs.servicenow.com/bundle/paris-servicenow-
platform/page/product/configuration-management/reference/ci-class-
manager-landing-page.html for more details.

12

DESIGN GUIDANCE

https://docs.servicenow.com/bundle/paris-servicenow-platform/page/product/configuration-management/reference/ci-class-manager-landing-page.html

What is the right level for your data?
We’ve just talked about managing your CI class hierarchy. What about the rela-
tionships between CI instances—and specifically the granularity of your data?
For example, should you model a server as a single CI, or should you decompose
it into its constituent parts—a top-level server CI with other CIs underneath it
representing the power supply, hard drive, and so on?
In traditional configuration management practices (not just IT), deciding the
granularity of CIs is referred to as “leveling”. According to a well-established
axiom, CIs should be leveled at the lowest level of independent change. Based
on that principle, you would have a single high-level server CI if you don’t want
to manage change at the server component level. In fact, a significant number
of ServiceNow customers have adopted this approach, rather than—for
example—having a separate CI for a server’s network interface card (NIC).
But is this the right approach? It really depends on whether or not you are using
automated discovery.
Here’s why. Creating and maintaining CIs is a laborious process if you do it
manually. The effort of creating fine-grained CIs can be unsustainable in this
case. And, if you don’t need the extra CIs at the moment, there’s a strong
argument for just having a top- level server CI.
However, there is also a downside with this approach—and it has to do with data
model governance. Let’s come back to that NIC card example. Best practice
says that IP addresses should be stored at the NIC level. Why? Because the NIC is
actually configured with the IP address. If you had two NICs—for example, in a
dual-homed host—then each NIC would have its own IP address. And of course,
NICs aren’t limited to servers. For example, routers have many network interfaces,
even if they aren’t separate cards. But, if you only have a top-level server CI, your
only option is to store IP addresses against that server CI. This can lead to situations
where IP addresses are sometimes stored against server CIs, and sometimes against
network interfaces. This isn’t hypothetical—it’s a real issue that we’ve seen. And
it makes it exceedingly difficult to manage IP addresses consistently in the CMDB
since you don’t know where to look.
This is only an example. In fact, the CSDM addresses this and many other similar
issues by providing data governance guidelines. In the case of IP addresses, it
mandates that IP addresses are stored against the network interface. And that’s
where ServiceNow applications expect to find IP addresses. If you store IP addresses
against a top-level server CI, this may limit the ServiceNow functionality that’s
available to you.
So, what’s the bottom line? If you use ITOM Visibility to discover your infrastructure
and map your services, it will generate a fine-grained model that’s aligned with
the CSDM. There’s no real downside to this—even though there are more CIs,
you can still limit your processes to the top-level server CIs. For instance, there is
no need to define processes to replace NICs if you don’t want to. On the other
hand, if you don’t use ITOM Visibility, a single server CI may make more sense
provided that you’re willing to accept any consequent loss of functionality and the
potential need to restructure your CMDB data in future.
On a related note, we strongly recommend that you do use ITOM Visibility to
automate infrastructure discovery and service mapping. Unless you have a small
operational environment, manually maintaining thousands of CIs just doesn’t scale.
And, while mapping a service with ITOM Visibility requires upfront effort, once the
service is mapped, ITOM Visibility automatically tracks subsequent changes without
additional manual effort. Contrast that with manual service mapping, where service
maps are often out of date as soon as they are created.

13

DESIGN GUIDANCE

What about business services?
Up to this point, the guidance we’ve provided is related to infrastructure, technical
services, and application services. All of these are directly linked to technology—
whether we’re discussing how to model network interfaces or build service maps,
the technology dictates the options. Yes, we add organizational information to
operationalize these types of CIs, but we’re still talking about technology.
Business services are different. As we said before, a business service supports a
business capability—such as managing customer orders—and is typically under-
pinned by one or more application services. However, there’s no way to discover
which application services make up a business service. It’s a business view of
capabilities, not a technical view of applications and infrastructure. In theory,
a business service could have no underlying IT components at all—it could be
provided by a shared services team that does everything manually.
Because they are not technical, business services need to be defined by the
business, with IT playing a supporting role. However, you may find that no one in
your business has defined business services—or even fully understands the concept.
If this is the case, don’t try to create business services on your own. Instead, focus
on use cases that involve infrastructure, technical services, and application services.
Work with your business to develop a long-term business services strategy, but
don’t make this a top priority. And make sure that you have high-level sponsorship
when you do this. Otherwise, your efforts are likely to be wasted.

14

DESIGN GUIDANCE

Operationalizing your CMDB
Now that we’ve covered key business, organizational, and design principles for
your CMDB, let’s look at how you turn these principles into practice. How do you
populate and update data in your CMDB, ensure data quality, and manage the
overall lifecycle of CIs?

Populating your CMDB
As we’ve already said, we strongly recommend populating your CMDB automa-
tically whenever possible. Use ITOM Visibility to collect information about your
infrastructure and digital services, and enrich this data with information from third-
party systems where appropriate.
Start by establishing your discovery strategy. For example, do you want to
discover all of your applications in one shot across multiple data centers, cloud
providers, and end-user devices? Perhaps you want to focus on a specific data
center, discovering all of the infrastructure and services in that data center
before you move on to the next one. Or do you just want to map a few critical
application services and their underlying infrastructure?
Again, the answer depends on what you are trying to accomplish—the configu-
ration management use cases and priorities you have agreed with your business.
Because of this, we can’t tell you exactly what the right strategy is—you’ll need
to determine this based on your needs. However, there are several key things to
consider as you develop your strategy:
• It’s relatively quick and easy to discover cloud infrastructure. Major cloud

vendors have well-structured APIs (for example, the AWS Config API) that let
you discover cloud infrastructure and track changes in real time. ITOM
Visibility is already integrated with these APIs, allowing you to populate your
CMDB quickly and easily with cloud infrastructure data. Because of this, you
may want to prioritize any use cases that involve cloud infrastructure.

• Discovering on-premises infrastructure requires more time and effort. Rather
than having homogeneous APIs, on-premises discovery requires you to integrate
with multiple IT components and systems. While ServiceNow® ITOM Visibility
comes with a rich set of discovery integrations, this still introduces additional
complexity. You will also need to ensure that ITOM Visibility can communicate
with all of these components and systems. For example, you’ll need to open
firewall ports and provide device credentials. This may take a significant
amount of time due to organizational barriers—while the physical effort may
be minimal, there is often resistance from security teams and system owners
due to security policy compliance.

• ServiceNow customers typically begin with horizontal infrastructure discovery
rather than vertical service mapping. To map a service, you need to discover
its infrastructure components first. Service mapping works by determining the
service-level relationships between CIs. These CIs must already exist in the CMDB,
and ITOM Visibility needs to be able to communicate with the corresponding
IT components to determine their service-level context. In other words, the CIs
should already be discovered. Note that this also has implications for
geographic discovery strategies. For example, if you limit discovery to a
specific data center, this can result in incomplete service maps if a service
spans multiple data centers.

• If you already tag your cloud resources, you can use these tags to create basic
service maps quickly and easily. Tags are key/value pairs that are used to label
cloud resources. For example, a {service, x} tag could indicate that a specific
cloud resource is part of service “x”. Tags are supported by all major cloud
vendors and are widely adopted. If you already have a cloud resource tagging
policy, ITOM Visibility can use this policy to create basic service maps. These

15

DESIGN GUIDANCE

maps show you each service’s cloud resources, but they don’t show you the
relationships between these resources. While limited, this information can still
be extremely helpful in a number of use cases—for example, understanding
service costs.

As previously discussed, ITOM Visibility follows CSDM data governance guidelines
when populating the CMDB. This helps you to avoid data quality issues. However,
if you plan to import data from third-party systems using Integration Hub, there is
no way to automatically ensure CSDM compliance. In this case, you are
responsible for complying with CSDM data governance.
Note that ServiceNow has recently launched a Service Graph Connector
Program to certify vendor integrations for CSDM compliance, timeliness, and
throughput. We suggest that you use these certified connectors where available.

The Identification and Reconciliation Engine (IRE)
Data quality is critical for CMDB adoption. If your internal customers don’t trust
your CMDB data, they won’t use it. And, once you lose that trust, it’s often
impossible to regain it. That’s why it’s crucial to design in data quality from day
one. You don’t get a second chance. And, leaving aside trust, the
consequences of poor data quality can be catastrophic—prolonged service
outages, misinformed business decisions, low productivity, wasted expenditures,
and more. Just think about your use cases and the benefits you’re anticipating.
You’re not going to achieve these benefits if your CMDB data quality is poor.
Data governance—as we’ve just discussed—is a crucial component of data
quality, but it’s only part of the picture. It’s not enough for data to be consistent
and timely—it also has to be identified correctly. For example, consider a
hypothetical example—a “transmitter”. One data source might refer a specific
transmitter as “TX 01”, whereas another data source uses “TMTR A” to identify the
same transmitter. Unless these two conventions are reconciled, ‘TX 01” and
“TMTR A” will appear to be different transmitters, rather than different names for
the same transmitter. In the context of the CMDB, this results in duplicate CIs: one
for “TX 01” and one for “TMTR A”. Again, this has serious consequences—for
example, it complicates diagnosis of service issues and can result in duplicate
work. And, of course, it makes it impossible to generate accurate reports.
The ServiceNow® Identification and Reconciliation Engine (IRE) addresses this issue.
It provides a centralized framework for CI identification and reconciliation across
multiple data sources. It does this with configurable identification rules tied to
specific data sources, which it uses to uniquely identify CIs and prevent duplicates.
The IRE also reconciles CI attributes by only allowing authoritative sources to write
specific attributes to the CMDB. This prevents attribute values from oscillating when
two different data sources report conflicting values.
The IRE works out of the box with ITOM Visibility, and you can also configure it to
handle third-party configuration data that you ingest via Integration Hub. You
can find more information here about the IRE, including how to create
identification and reconciliation rules.

Managing the CI lifecycle
The job of your configuration team doesn’t end when you populate a CI into
the CMDB. You need to discover attributes and relationship changes in a timely
manner. You also need to ensure that attribute owners keep non-discoverable
attributes up to date. And, if a non-discoverable attribute is under change man-
agement, you’ll also need to ensure that any change is approved before it is
made in the CMDB. You can automate this using ServiceNow® ITSM Change
Management.
Even with these processes in place, there is always the possibility of configuration
drift—for example, if someone forgets to update the CMDB or makes an error
while updating it. That’s why it’s important to periodically validate non-discover-

16

DESIGN GUIDANCE

https://docs.servicenow.com/bundle/paris-servicenow-platform/page/product/configuration-management/concept/c_CMDBIdentifyandReconcile.html

able CIs attributes with CI owners. You’ll also want to periodically confirm that
discovered CIs and relationships match design intent.
Use ServiceNow Data Certification to do this. This provides on-demand and sche-
duled validation of CMDB data by automatically assigning certification tasks to
appropriate data owners. These owners certify the data by answering a series
of questions, with the results recorded in ServiceNow so you can review them
and initiate remedial actions as required. You can also forward the results to
ServiceNow® Governance, Risk, and Compliance to provide automated
evidence for audits and other purposes.
In addition to periodic validation, you’ll also want to archive your CMDB data when
you no longer need it for day-to-day operations. This releases system resources
and declutters your configuration management environment. For example, you
may decide to archive CIs when they’re no longer part of your operational envi-
ronment, or to archive historical data after a set period of time—for example,
one year.
You can do this with ServiceNow’s Data Archiving app. This allows you to create
rules that control what is archived and when. It also gives you control over what
you do with archived data—for instance, retain it for regulatory purposes for five
years and then destroy it.

Monitoring the health of your CMDB
Once you have the tools and processes in place to maintain a healthy CMDB,
you need to resolve issues as soon as they arise. The best way to do this is to monitor
your CMDB using the ServiceNow® CMDB Health Dashboard. This shows you KPI
scorecards for your CMDB, including CMDB completeness, correctness, and
compliance. You can also drill into health details for specific services, groups of
CIs, and individuals CIs. This allows you to pinpoint CMDB health problems and
take corrective action—for example, by following up with CI owners or service
owners when CIs become stale (i.e. haven’t been updated recently).
You can also gain actionable insights from the CMDB and CSDM Data
Foundations Dashboards, which can be downloaded from the ServiceNow Store.

17

DESIGN GUIDANCE

https://docs.servicenow.com/bundle/geneva-it-business-management/page/product/data_certification/concept/c_DataCertification.html
https://store.servicenow.com/sn_appstore_store.do

Let’s recap
Your CMDB is the cornerstone of successful digital service delivery. It’s more than
a master data repository. It enables data-driven business outcomes, strengthening
your internal IT processes and helping you to realize major business benefits
beyond IT.
Implementing and maintaining a successful CMDB isn’t an overwhelming task,
but it does require a structured approach that starts with identifying business
needs. Key steps along your CMDB journey include:

© 2020 ServiceNow, Inc. All rights reserved. ServiceNow, the ServiceNow logo, Now, Now Platform, and other ServiceNow
marks are trademarks and/or registered trademarks of ServiceNow, Inc. in the United States and/or other countries.
Other company and product names may be trademarks of the respective companies with which they are associated.
SN-CMDB-Design-Guidance

servicenow.com

We hope that this document has helped you to chart your course to a successful
CMDB. If you have further questions or need additional help, learn more here.

DESIGN GUIDANCE

18

Working in partnership with your business to identify areas
where your CMDB can deliver value

Thinking about how data and processes need to work
together to deliver business outcomes

Clearly defining your configuration management
processes, including roles and responsibilities

Documenting your configuration management plan and
evolving it to keep pace with business needs

Designing your CMDB with your desired end state in mind

Aligning your CMDB data to support your use cases

Following data governance and design best practices

Populating data automatically wherever possible

Taking proactive steps to avoid data quality issues and
keep your CMDB up to date and accurate

Monitoring the health of your CMDB and taking immediate
remedial action when needed

Configuration%20Management%20Database

Appendix A—A sample Configuration Management
Plan outline
1. Introduction

a. Purpose
b. Background and Context
c. Scope
d. Definitions
e. Goals and Objectives
f. Future State Roadmap
g. References
h. Applicable Policies and Standards
i. Hierarchy of Configuration Management Plans

2. Configuration Management Organization
a. Organizational Structure
b. Current Assignments
c. Roles and Responsibilities
d. Configuration Management Job Family
e. Configuration Control Board
f. Interfaces to Other Governance Mechanisms

3. Configuration Planning
a. Overview
b. Project Tailoring
c. Continuous Process Improvement
d. Training Strategy
e. Communications Strategy
f. Policies

i. Configuration Management Plans
ii. Configuration Management Plan Reviews
iii. Deviations and Waivers
iv. Organization and Assignment Changes
v. Communications
vi. Service Requests

g. Procedures

4. Configuration Identification
a. Overview
b. Policies

i. Configuration Item Classification
ii. Configuration Item Identification and Registration
iii. Configuration Item Naming
iv. Decommissioning and Archiving
v. CI Relationship Modeling
vi. Configuration Baselines
vii. Definitive Media Library and Hardware Store
viii. Relationship with Asset Management
ix. Data Confidentiality

c. Procedures

5. Configuration Control/Change Management
a. Overview
b. Policies

i. Required integration with Change Management
ii. Configuration Control Processes
iii. Baseline Control
iv. Interface Control

19

DESIGN GUIDANCE

v. Version Control
vi. Supplier/Sub-Contractor Control
vii. Release Authority
viii. Relationship with Release and Deployment Management

a. Procedures

6. Verification and Audit
a. Overview
b. Policies

i. Verification of Changes
ii. Scheduled Audits
iii. Data Integrity Incidents and Response
iv. Audit Responses and Closure

c. Procedures

7. Status Accounting
a. Overview
b. Policies

i. Standard Reports
ii. Customized Reports
iii. Dashboard Reporting
iv. Integration with Other Processes

c. Procedures

8. Interface Control
a. Overview
b. Policies

i. Life Cycle and Procedural Interfaces
ii. Organizational Interfaces
iii. Hardware Interfaces
iv. Software Interfaces

c. Procedures

9. Supplier/Sub-Contractor Management
a. Overview
b. Policies

i. Supplier/Sub-Contractor Acceptance of Work
ii. Supplier/Sub-Contractor Issue Management
iii. Supplier/Sub-Contractor Periodic Reviews
iv. Supplier/Sub-Contractor Audits

c. Procedures

10. Configuration Management System (CMS) and Tools
a. Requirements for the CMS
b. Logical Design of the CMS
c. Physical Design of the CMS
d. Use Cases
e. Testing
f. Test Plans
g. Test Scripts
h. Current Operational Constraints
i. Maintaining the CMS

11. Document Information
a. Approvals
b. Revision Log
c. Distribution List

20

DESIGN GUIDANCE

