
Source Control, Git, and
Industrial Automation

TABLE OF CONTENTS

1. What is Source Control?
2. Source Control Benefits
3. Adopting Source Control
4. Source Control vs. "The Archive Folder"
5. Not a Revolution, Just Responsible
6. Available Tools + Challenges

1

https://www.copia.io

Source control systems have become ubiquitous in the IT world
but have not become a major component of operational
technology (in particular, PLC programming).
There is an increasing, popular movement in the industrial
controls world to bring modern source control systems to PLC
programming. This document will review the benefits of these
systems and why people have begun to push for their adoption
across many industrial organizations.

We argue here that source control isn’t a revolutionary concept,
but instead provides multiple tangible benefits to organizations
and should be strongly considered given the relative ease of
adoption and low implementation cost. When benefits include
reduced downtime, improvements to engineering efficiency,
and greatly optimized workflows these systems easily provide
ROI for any organization.

More than that, they ultimately improve the development
experience for controls engineers and automation experts. Once
familiar with these systems, we have heard from engineers that
the idea of building systems without source control feels like
“walking a tightrope without a net.”

Overview

...building systems
without source control
feels like “walking a
tightrope without a net.”

2

What is Source Control?

Put simply, a source control system is really just an advanced file management
system that enables people and teams to manage the revision history of their
documents.

Source control systems tend to feature:

REVISION HISTORY
This enables people to take meaningful snapshots of their files which they can
easily retrieve or return to.

VERSION CONTEXT
This enables teams to understand who changed what and why. Often these
systems require credentials that enable traceability.

SHARED REPOSITORIES
Centralized storage systems (either in the cloud or on-premise) which allows
teams to access relevant files.

ACCESS CONTROLS
Mechanisms to enable access to different files with different permissioning,
such as read and write access for different stakeholders.

FILE REVIEW
Mechanisms to enable teams to review changes before they are committed to
the shared repository.

These are common sense features that build on top of concepts that many
controls professionals are familiar with such as a shared network drive or cloud
hosted storage. The most popular source control system is Git, which was
invented by the creator of the Linux operating system, and has been adopted by
millions of engineers in the last 15-years. In fact, the source code files for the
application you are reading this in are more than likely stored in a Git repository.

Git - a source control
system created by the

creator of Linux.

...the source
code files for
the application
you are reading
this in are more
than likely
stored in a Git
repository.

3

Source Control Benefits

The adoption of a strong source control system provides
numerous benefits to organizations that can be mapped to
ROI.

OPERATIONAL UPTIME
Possibly the biggest benefit of strong version control
practices is the ability to understand what code changed in
the case of unplanned downtime. Investment in version
control systems can enable teams to easily recognize who
made a change to a system, revert that change, and even
understand the context of that change. When the cost of
unplanned downtime is on average $250,000 / hour, every
minute counts in terms of root causing and mitigating an
issue.

ENGINEERING EFFICIENCY
Source control systems unlock new efficiencies between
engineers within the same team and organization. For
example, we’ve seen organizations invest in extensive AOI
libraries, templated “master” copies of their machine builds,
and share reusable components that enable them to
quickly kick off new projects. A strong version control
practice enables teams to ensure that all of their members
are using the correct version of these reusable components
and can even provide a centralized system for
documentation.

AVOID COPY + PASTE
Good version control systems will integrate directly with a
computer’s file system so that you do not have to copy and
paste files in order to store back-ups. They’ll automatically
pick up on and store meaningful changes. This means
you’re less likely to lose a file. One controls engineer told
us “my hard drive failed literally the day after adopting a
version control system.” Fortunately, they were backed up
in a central repository!

AUDITING + TRACEABILITY
Increasingly many contracts and regulatory environments
require strong version control practices. Organizations that
seek SOC 2 compliance have to have a system for code
review. Many industrial contracts require suppliers to
provide first-order traceability as part of their contract.
We’ve heard of organizations who've considered
implementing version control practices for auditing for
multi-million dollar contracts.

While high degrees of security and the need for self-hosted
solutions can make version control systems expensive to
implement for some enterprise manufacturers, most
reasonable version control systems cost in the hundreds of
dollars a month for a single team to adopt.

One of the major benefits of source control systems is that
they typically integrate at the file system layer. This means
that technical adoption is straightforward. We’ve seen
companies fully migrate to a modern source control system
in less than an hour.

REGULAR COMMITS
Engineers need to develop a best practice of always
committing changes to their source control system before
deploying to production.

CODE REVIEW
Engineering teams can begin to develop a code review
best practices that creates a record of feedback on code
changes and enables deeper understanding of what
changed and why certain decisions were made (see figure
1).

REUSABLE CODE
Engineers can invest in centralized repositories and
documentation to provide reusable code for their team and
organization.

CODE SHARING
Engineers can invest in access management protocols to
share their code with external and internal stakeholders in
ways that protect their IP but also allow them to accelerate
and improve their collaboration.

WORKFLOWS
Very advanced engineering teams will invest in automated
practices around code changes such as internal reporting
and even integration with their deployment model.

Overall, the basics of source control are extremely easy to
adopt, but strong version management systems (like Git)
can scale to organizations of virtually any size with virtually
any sort of collaborative workflow.

Adopting Source Control

Figure 1.
Code review with
differentials of routines.

4

In a recent Reddit post on source control systems a commenter made this
point:

“I don’t get it - this is so you can keep track of versions of your PLC
program? At my plant, we have a folder named “archive” for each
project. We just name the old project with the date and save it before
making edits, etc.”

In a typical archive folder, there is no
context about changes except for file name
changes.

Source Control vs. “The Archive Folder”

A responder gave a “quick and dirty” explanation as to why a true source
control system is so much more powerful than an “archive folder.”

1. Only saves the differences between versions saving space.

2. Keeps a history of the changes and who made them

3. Allows multiple people to work on different parts of a project at

the same time and merge them together without manually going

through and splicing in code

4. On commits must provide a message so helps keep track of why

a change was made.

To expand on their excellent answer, we distinguish between a “backup
system” and a “source control system.” A backup system provides you
with regular backups of a production system. This is useful, but it’s
difficult to know what has changed, who has changed it, and when it
changed.

With a proper source control system, it becomes easy to trace meaningful
changes and thus root cause regressions and reduce production
downtime. Furthermore, source control systems often provide powerful
mechanisms for code sharing and collaboration which streamline
operations and save engineers time.

Ultimately, these sorts of arguments against source control are not new.
We spoke with a principal software engineer at a major technology
company who explained the history of adoption of Git at Microsoft. When
we asked him “how did you get people to finally adopt [source
control]?” He simply responded, “bad things happening.”

Good source control practices save engineers when they need it the
most.

When we asked [...] “how
did you get people to
finally adopt [source
control]?” He simply
responded, “bad things
happening.”

5

https://www.reddit.com/r/PLC/comments/m60rn4/copia_automation_gitbased_code_versioning_for_plcs/

Not a Revolution, Just Responsible

Recently an engineer commented in an online discussion about source control, “I have been using my own system to manage files for
years, I don’t understand why this is revolutionary.”

We look at this through a different lens. It’s best captured by an embedded systems programmer who over the course of a year
convinced their team to adopt source control practices. He eventually convinced his team by telling them that it was “frankly
irresponsible” to not use version control.

In a world where controls professionals are often responsible for multi-million dollar production environments, and where the cost
of downtime can easily be hundreds of thousands of dollars or even human life, we believe that organizations simply cannot afford
to not adopt systems that will easily allow them to identify who changed what, where, when, and why.

COMPLEXITY
Git is an extremely powerful tool with a very intense learning
curve. For most control system professionals, just learning
the command line is a barrier to entry, especially on windows
machines which require special plug-ins to work with a tool
originally designed for Linux.

HOSTING
To make Git truly work, it’s important to have a remote server
that hosts a Git repository. Maintaining and managing a Git
server for a standard team is expensive, and often not worth
the benefit that it provides.

VISUAL PROGRAMMING
Whereas many programming languages are entirely text-
based the IEC 61131 specification provides definitions for
multiple visual programming languages. Ladder logic and
FBD are nearly ubiquitous in the controls engineering world,
and that is likely not going to change any time soon. Certain
features in Git, such as showing the “diff” or “difference”
between text based files entirely breaks in the context of
visual programming paradigms. This makes features such as
version history that presents diffs to understand changes less
meaningful.

Available Tools + Challenges

For many industries, the standard for 15-years has been “Git,”
a distributed source control system that makes collaboration
around code extremely easy. Git is available for free as an
open source product.

However, Git by itself has some major downsides that make
simple adoption by controls engineering orgs difficult:

INDUSTRIAL FILES
Industrial file types were designed well before modern version
control systems. While some systems have moved to XML,
these are still hard for engineers to parse and understand.
Furthermore, common file types like ACD files for Allen-Bradley
PLCs are still entirely in binary, and are not human
comprehensible.

The complexity of using and difficulty of hosting Git is a well-
known problem, with major Git services such as Github and
Gitlab becoming multi-billion dollar companies as they have
solved this problem for millions of engineers. However, the
problems specific to industrial automation have thus far
impeded adoption in industrial automation broadly.

While it’s possible to introduce a Git-based workflow on top of
Github or Gitlab, only recently have companies begun to
solve this problem for controls professionals. In particular,
companies like Copia Automation provide a Git-based
workflow built directly to support controls engineers with first
order support for IEC 61131 languages and vendor-specific
industrial file types.

From left to right: GitHub, GitLab, and Copia

6

https://github.com/
https://about.gitlab.com/
https://copia.io/

Source control systems are easy to adopt, affordable, and
provide immediate benefits to organizations in terms of
operational uptime and efficiency. Adoption of source control
systems have been curtailed by the lack of support for industrial
use cases. We hope that as we move into the new decade of
industrial automation, we begin to see major adoption of powerful
source control tools for the foundational systems that power the
industrial economy.

Conclusion

We hope that [...] we
begin to see major
adoption of powerful
source control tools for
the foundational
systems that power the
industrial economy.

Copia Automation is a company dedicated to building developer
tools to improve efficiency, operational uptime, and agility for
organizations.

To learn more visit us at our website and feel free to email with
any questions or comments at contact@copia.io.

Copia Automation

Specifications subject to change without notice. Copia Automation. All rights reserved. 7

https://copia.io/
https://www.copia.io

