Vapor Recovery
Developments in Emission
Standards and
Applications

Simon Shipley 2nd June 2015

BURNERS

FLARES

INCINERATORS

PARTS & SERVICES

➤ Zeeco Company Profile

- Privately held by a family who has been involved in Process Engineering and Combustion Technology for over 80 years.
- Headquarters in Broken Arrow, near Tulsa, Oklahoma
- More than 20 Worldwide locations.

Process Burners / Burners Power Industry / Duct Burners **BMS Management and Control Systems Flares and Flare Systems**

Thermal Oxidation / Incineration

Vapor Recovery Systems Vapor Combustion Systems

Flare Gas Recovery Systems

Mechanical Vapor Recovery Land Fill Combustion Systems

➤ Environmental Control

Environment Legislation:

reduction of hydrocarbon emissions to the atmosphere, improving air quality and operational safety.

Nearly Always the Key Driver

Economics:

recovery of valuable petroleum products that would otherwise be lost to atmosphere.

Rarely a driver for the implementation of control measures.

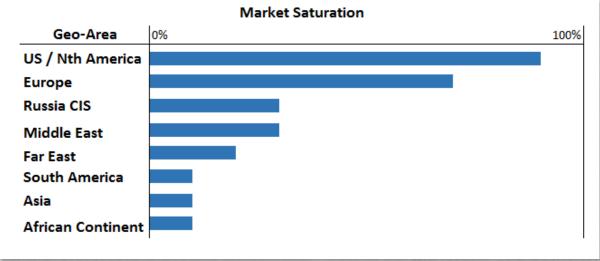
Vapor – Volatile Organic Compound (VOC).

- ZEEGO
- Vapor generated through evaporation / hydrocarbon saturation of the air / inert gas above a hydrocarbon liquid.
- Gasoline / Crude Oil / Naphtha / Condensate / Benzene / Xylenes

Vapors recovered from :

Road Truck Loading - (Vapor Displaced from the Truck / Rail Car / Vessel during filling).

- Rail Car Loading.
- Ship / Barge Loading.
- Tank Venting. Vapours displaced through filling and or thermal growth / evaporative effects in the tank.

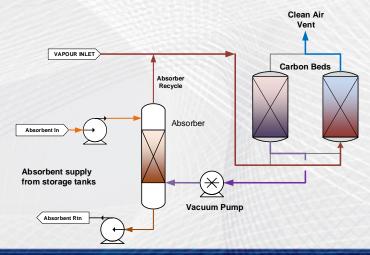

➤ Historical Growth

- Truck Loading Applications in the US: 1970 / 80s
 - Vapour Recovery Systems and Vapour Combustion Systems
- Legislation introduced into Europe In the 1990s
 - Covering Gasoline Loading Operations.
 - EU Directive 94/EU/63
- Other Countries Followed : Far East / Middle East / Russia
- Environmental legislation driver for other emission controls legislation.

Advancing The Legislation in Terms of Applications and Emissions

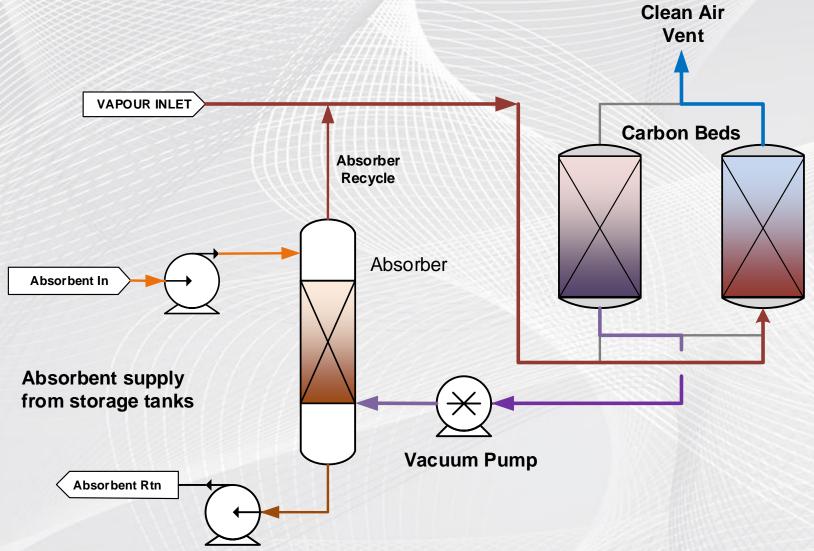
Requirements.

➤ Types Of Vapour Control Technologies


- Activated Carbon Adsorption Vapor Recovery BAT
- Cold Liquid Absorption Vapor Recovery
- Membrane Vapor Recovery
- Pressurised Absorption Vapor Recovery
- Vapour Combustion Vapor Control Measures

	Process	On He	Hess HC.	s Intermite	Emission	Jems S. Range	John C. J.	40't	Gpr _{ital}	Operating Cost
ZCA	Activated Carbon Absorption >>	***	***	***	***	*	***	\$\$\$	\$	\$
CLA	Cold Liquid Absorption >>	*	***	**	*	**	***	\$	\$\$\$	\$\$\$
Mem	Membrane >>	**	***	**	**	**	***	\$\$	\$\$	\$\$
PA	Pressurised Absorption >>	*	***	**	*	*	**	\$	\$	\$\$
VCU	Vapour Combustion >>	**	***	**	***	***	***	-	\$	\$\$

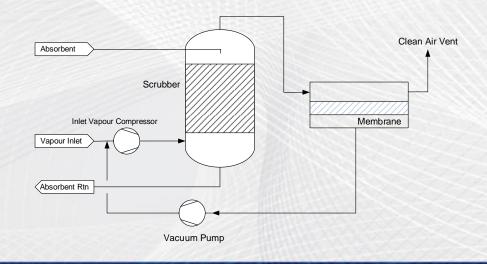
	Process	Cow HC & High HC & High HC & High HC & High HC & Hoose Finishions Range Popular Popula											
ZCA	Activated Carbon Absorption >>	***	***	***	***	*	***	\$\$\$	\$	\$			
CLA	Cold Liquid Absorption >>	#	***	**	*	**	***	\$	\$\$\$	\$\$\$			
Mem	Membrane >>	**	***	**	**	**	***	\$\$	\$\$	\$\$			
PA	Pressurised Absorption >>	*	* * *	**	*	*	**	\$	\$	\$\$			
VCU	Vapour Combustion >>	**	***	**	***	***	***		\$	\$\$			


➤ ZCA - Activated Carbon Vapour Recovery Best Available Technology (BAT)

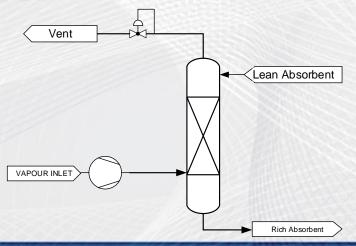
- Simple Reliable Process
- Wide Turn Down Capability: 0 to 100% of Design (Flow and Inlet HC Concentration)
- Wide Range of Products.
- Wide Range of Applications : Truck Loading Through to Ship Loading.
- Good Wide Range of Emissions Capabilities.
- Relatively Low Power Requirements.
- Good Overall Operating Efficiency i.e. Recovered Product / kW
- Low Maintenance Requirements
- Familiar Construction

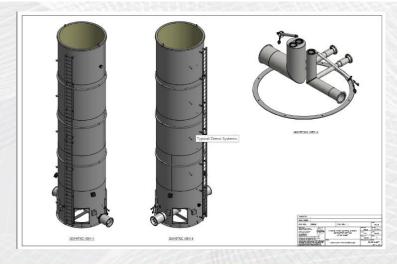
➤ Activated Carbon Vapour Recovery Process

	Process	ON HO?	Hes HC.	s Intermite	Emission	Temp - Mange	Pomo C JA	40r 40r	Garia/	Operating Cost
ZCA	Activated Carbon Absorption >>	***	***	***	***	*	***	\$\$\$	\$	\$
CLA	Cold Liquid Absorption >>	*	***	**	*	**	***	\$	\$\$\$	\$\$\$
Mem	Membrane >>	**	***	**	李李	**	***	\$\$	\$\$	\$\$
PA	Pressurised Absorption >>	*	***	**	*	*	**	\$	\$	\$\$
VCU	Vapour Combustion >>	**	***	**	***	***	***	-	\$	\$\$


Cold Liquid Absorption

	Process	ON HO?	Hes HC .	s Intermite	Emission	Temo 100	Pomor 11	40' 40'¢	Gartial C	Operating	, Cos _*
ZCA	Activated Carbon Absorption >>	***	***	***	***	*	***	\$\$\$	\$	\$	
CLA	Cold Liquid Absorption >>	*	***	**	*	**	***	\$	\$\$\$	\$\$\$	
Mem	Membrane >>	**	***	**	**	**	***	\$\$	\$\$	\$\$	
PA	Pressurised Absorption >>	*	***	**	*	*	**	\$	\$	\$\$	
VCU	Vapour Combustion >>	**	***	**	***	***	***	-	\$	\$\$	




	Process	Cow Hey	High HC.	Intermity	Emission	Temp 2 10	Pemor J.	40' 40't	Garia/	Operative Cost
ZCA	Activated Carbon Absorption >>	***	***	***	***	*	***	\$\$\$	\$	\$
CLA	Cold Liquid Absorption >>	*	***	**	*	**	***	\$	\$\$\$	\$\$\$
Mem	Membrane >>	**	***	**	**	**	***	\$\$	\$\$	\$\$
PA	Pressurised Absorption >>	*	***	**	*	*	**	\$	\$	\$\$
VCU	Vapour Combustion >>	**	***	**	***	***	***	-	\$	\$\$

Pressurised Lean Oil Absorption (PLA)

	Process	On He	Hes HC .	Intermite	Emission	Temo Range	John Com	40°t	Gprital_	Operatine of	*5007
ZCA	Activated Carbon Absorption >>	***	***	***	***	*	***	\$\$\$	\$	\$	
CLA	Cold Liquid Absorption >>	*	***	**	*	**	***	\$	\$\$\$	\$\$\$	
Mem	Membrane >>	**	***	**	**	**	***	\$\$	\$\$	\$\$	
PA	Pressurised Absorption >>	*	***	**	*	*	**	\$	\$	\$\$	
vcu	Vapour Combustion >>	**	***	**	***	***	***	-	\$	\$\$	

➤ Development

- Products Loaded
- Vacuum Pump Technology Developments
- Tightening of Emission Requirements
- Widening Range of Applications
- Increase in the Loading Rates Size of VRUs

➤ Development

- Products Loaded
- Vacuum Pump Technology developments
- Tightening of Emission Requirements
- Widening Range of Applications
- Increase in the Loading Rates Size of VRU's

> Products

- Gasoline [Truck / Ship / Rail Car]
- Crude Oil [Ship / Rail Car]
 - Variable Compositions / Physical Properties
 - H₂S Concentrations
- Aromatics Benzene / Xylenes [Truck / Ship]
- Naphthas / Condensates [Ship / Tanks]
- Ethanol / Methanol [Truck / Tanks / Ship]

➤ Development

- Products Loaded
- Vacuum Pump Technology developments
- Tightening of Emission Requirements
- Widening Range of Applications
- Increase in the Loading Rates Size of VRU's

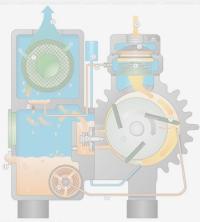
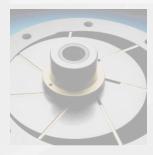
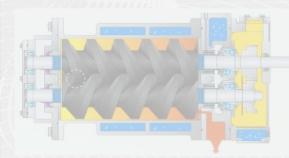
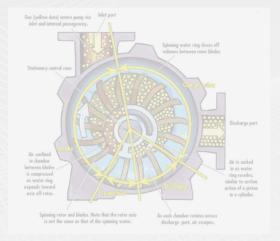
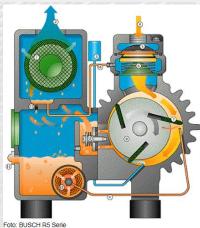
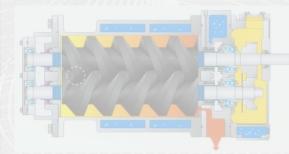




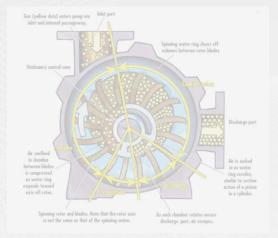
Foto: BUSCH R5 Serie principle and cutaway



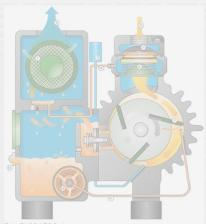
Screw Vacuum Pump

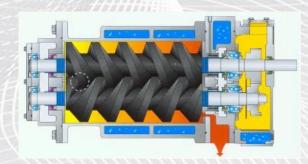


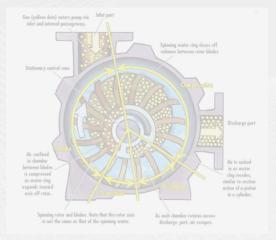




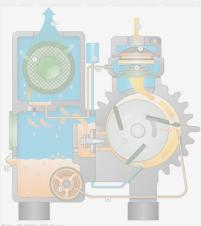
Screw Vacuum Pump

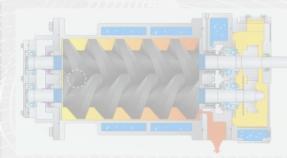


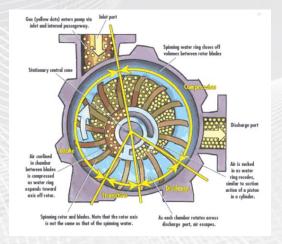




Screw Vacuum Pump







Screw Vacuum Pump

➤ Development

- Products Loaded
- Vacuum Pump Technology developments
- Tightening of Emission Requirements
- Widening Range of Applications
- Increase in the Loading Rates Size of VRU's

> Emission Regulations

ssion Limit

■ EU (gasoline) 35 g/Nm³ (Vented)

■ USA 35 g/Nm³ (Loaded)

■ India 5 g/Nm³

Denmark
 150 mg/Nm³

■ Germany / NL 50 mg/Nm³

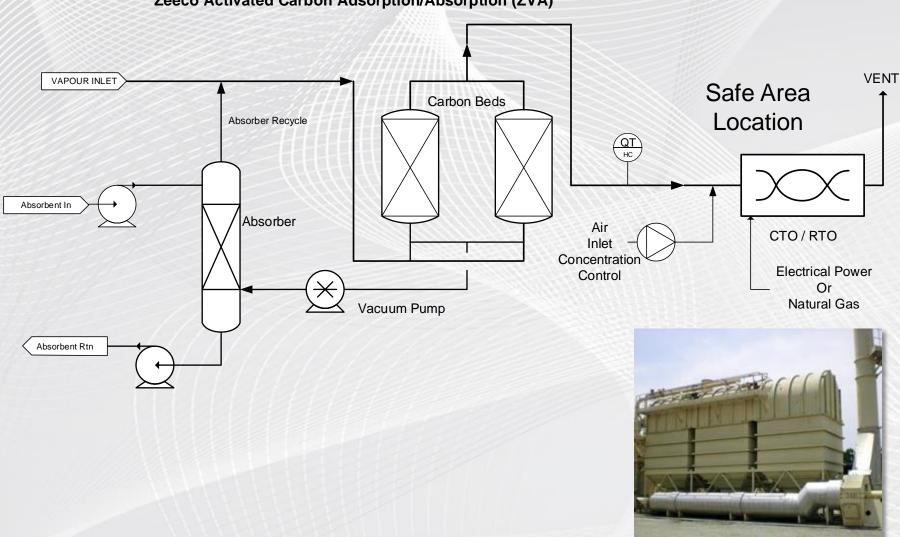
■ Oman 35mg/Nm³

■ Middle East : Typically 95% Recovery Efficiency

although depends on the individual application.

Recovery Rates: 1 to 2 ltrs per 1000ltrs loaded

• 10 g/Nm³ –A common standard adopted by designers and operators


Aromatics (Benzene / p-xylene) – 1mg/Nm³ to 10mg/Nm³;

Crude Oil Vapours: Typically 78% to 95%m Recovery Efficiency
 Dependent on Crude Oil.

➤ Extreme Emission Requirements <100mg/Nm³

Zeeco Activated Carbon Adsorption/Absorption (ZVA)

➤ Development

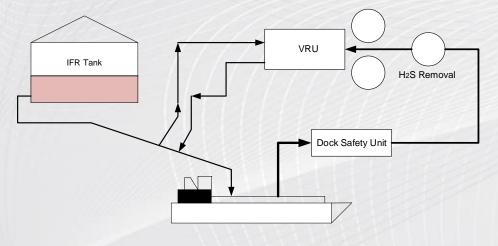
- Products Loaded
- Vacuum Pump Technology developments
- Tightening of Emission Requirements
- Widening Range of Applications
- Increase in the Loading Rates Size of VRU's

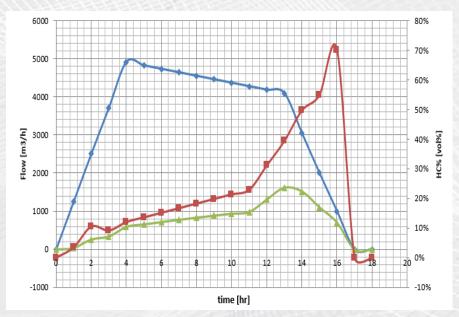
Vapour Recovery Applications

ZEEGÓ

- Vapours Recovered Directly from Truck and/or Railcar Loading
- Vapour Balancing
- Tank Filling
- Tank Breathing

►VRU-Applications – Maritime & Crude Oil

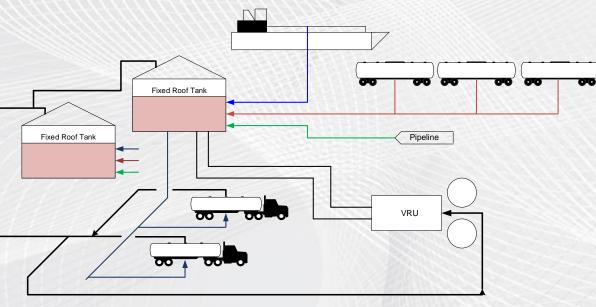

- Gasoline
- Crude Oil Loading
- Naphtha & Condensates
- Chemicals BTX
- On-Shore (Quay Side)
- Off Shore
 - Shuttle Tanker
 - FPSOs


➤ Ship Loading Applications

- Continuous Loading Operations
- Large Flow Rates
 - 2000m³/hr to 67,000m³/hr
- Power Requirements : 500kW up to 5MW (Potentially Higher)
- Wide Range of Products
- Complex Loading Dynamics

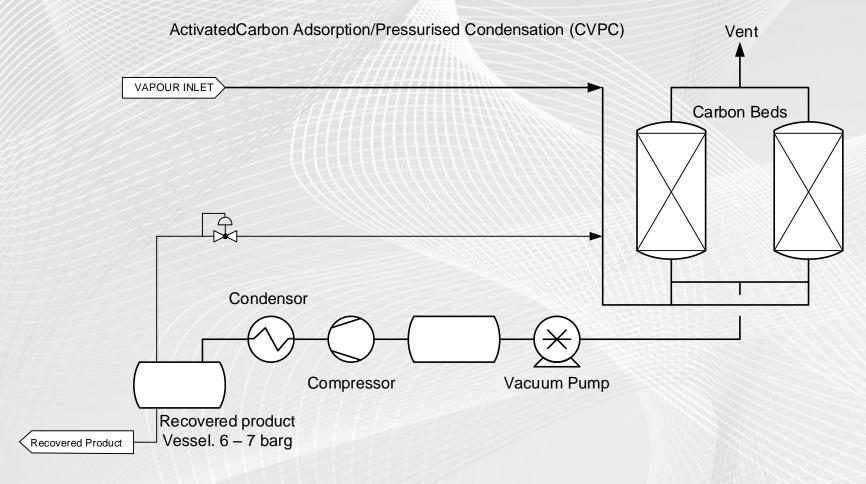
➤ Truck Loading Applications

- Mature Product Development
- Non-Continuous Loading Operation
- Small to Medium Sized Systems
- Power Requirements; Typically 50 to 120kW
- Typical Loading Capacities: 500 to 980m³/hr: 10,000m³/day
- Emissions from 35g/Nm³ to 35mg/Nm³
- Positive Return on Investment



> Tank Venting

ZEEGÜ


- Continuous Duty Application
- Tanks Vents or Balanced Vapour Systems Combined with Either Truck Loading or Ship Loading.
- Vapour Concentrations : Generally Should Be Considered as Saturated.
- Emissions from :
 - Tank Filling
 - Thermal Growth
 - Draw Out Emissions

➤ Carbon Vacuum Pressurised Condensation

➤ Development

- Products Loaded
- Vacuum Pump Technology developments
- Tightening of Emission Requirements
- Widening Range of Applications
- Increase in the Loading Rates Size of VRUs

➤ Loading Rates

- Truck Loading : Relatively Low Loading Volumes
 - Typically 100m3/hr up to 980m3/hr (32,000 to 260,000usgph)
- Ship Loading :
 - Low end: 800 to 1000m³/hr (5000 6300bph)
 - Mid Range: 2000 to 10,000m³/hr (12,600 63,000bph)
 - High Mid Range: 15000 to 25,000m³/hr (94,300 157,250bhp)
 - High End: 36,000m³/hr 45,000m³/hr (226,500 283,000bph)
 - 50,000m³/hr to 65,000m³/hr (314,500 408,800bph)
 - □ Vapour Flows: 80,000m³/hr (352,000gpm)

> OPEX / ROI

- The through-put of the terminal
- The gasoline / diesel split
- Vapour pressure of the product
- The efficiency of the VRU
 - How well is it maintained
 - Are energy saving operations incorporated into the design
 - Utility prices, i.e. electrical power
- The value of the product itself (can vary significantly)
- Where is the product taxed
 - (At the refinery or at the loading racks?)
- Whether Stage II recovery has been implemented

➤ Typical Product Recovery Rates

- Empirical data based on over 200 VRU's in operation:
 - Recovered product qty between 1 and 1.5 ltrs/1000 ltrs loaded
 - These figures are based on average hydrocarbon concentrations in vapour, typically varying from 25 to 40%.
- At a 5,000,000 ltr/day terminal:
 - Product recovered : 5,450 ltrs to 10,000 ltrs
 - Value of recovered product: EUR 2,500 to 4,600/day

Medium sized terminal – 1,500,000 m³/yr throughput.

Typical VRU purchase price : Euro 500,000

Typical installation cost : Euro 1,000,000

Typically 2 – 3 times the cost of the VRU

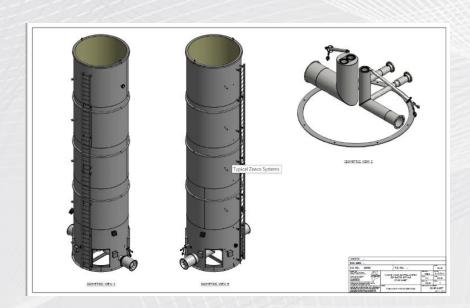
Total est. installation cost : Euro 1,500,000

Annual electrical costs : Euro 10,500

Based on electrical cost of Euro 0.065/kWh

Annual maintenance costs : Euro 8,300

Assumes reasonable spares & utility usage


Typical annual operating cost : Euro 18,800

Slide 36

Vapor Combustors

- Primary Customers
 - Loading Terminals
 - Tank Batteries
- Often used in place of VRU or as backup to VRU

➤ Portable Vapour Combustors

> Aftermarket and Service

➤ Aftermarket and Service: Service Capabilities

We can provide our own Field Service Engineers who are fully trained on all of Zeeco's equipment.

Our engineers are trained in:

- •Health and Safety of the operation of combustion equipment.
- •Supervision of installation and erections.
- Pre-commissioning activities.
- Commissioning activities.
- ·Start-up of equipment.
- Pre-inspection of equipment for retrofitting.

>THANK YOU!!

Please visit www.zeeco.com

FLARES

INCINERATORS

PARTS & SERVICES