
1

The Phase2
Project Starter:
Octane

2

v

Octane is a set of best practices

and tools that Phase2 uses to

kick start new projects quickly

and efficiently. It represents

years of collective experience

acquired by hundreds of software

architects, engineers, and

developers at Phase2.

Octane consists of several loosely
coupled packages:

• Common build scripts

• Support for git workflow

• Local development tools

• Remote environment management

• Continuous integration/deployment
(CI/CD)

• Automated testing (functional,
accessibility, visual regression)

• Support for Drupal and hosting providers

What is Octane?

3

Robustness: workflow and testing process
keeps the primary environment stable and
able to be released to production at any time.

Focus: allows developers to think less about
"infrastructure" and focus more on the
client-specific requirements of the project.

Flexibility: "loosely coupled" packages
allow projects to extend and customize
as needed to meet project needs.

The primary benefits of Octane include:

Consistency: uniform project structure
decreases the time needed to start new
projects or onboard developers onto
existing projects.

Speed and Efficiency: fast development
workflow for building and testing increases
sprint velocity and allows developers to
stay focused on their current task.

Quality: standard tooling and process help
ensure code quality and encourages re-use
of best solutions.

Isolation: environments are created for each
new feature or bug-fix allowing testing in
isolation from other developers while still
using common testing content.

Validate: ensures all code meets code
style requirements regardless of language
or framework.

Build: responsible for bringing in
dependencies (composer, npm) and
building any assets or artifacts.

Test: wraps various testing frameworks
and groups them into a set of faster tests
whose failure will "break the build", and
a more comprehensive (and slower) set
of tests that can be run on demand or
scheduled as needed.

Git: provides scripts to support our
git workflow.

DB: manipulates databases across
environments.

CI: provides scripts to interact with
the GitLab CI environments within
our Phase2 DevCloud cluster.

Common build scripts
Common bash scripts are used in all environments (local, CI, etc) for various tasks:

4

Local Development
Octane provides configuration for spinning up

local development environments via docker

containers. Currently Octane utilizes the

Docksal package:

• Provides a shallow wrapper around
existing docker and docker-compose
configuration and does not invent its
own configuration language.

• Supports the concept of a "build container"
(cli) that contains all of the tools needed
to build a site (composer, npm, php, etc),
allowing the web application container
to only contain the needed apache or
nginx images used in production.

• Supports persistent volume sharing
between containers, along with managing
the DNS of containers, allowing multiple
projects to be running on a single
computer in different namespaces.

• Command line interface (fin) implemented
as a simple bash script without other
dependencies.

• Supports the official Docker Desktop across
both OSX and Windows (WSL2) platforms.

Because file sharing on the Mac OSX platform

is very slow for both NFS and bind, Mutagen

is used to synchronize files between the local

file system and the docker containers. This

achieves native file performance in both the

local IDE and for the site and scripts running

within Docker. By controlling which files are

needed locally vs in the container, the lag

between changing a local file and seeing that

change in the container is minimal.

The Common Scripts mentioned in the

previous section can be executed directly, or

can be used via Docksal "fin" to validate, build,

and test the site within the docker containers.

https://docksal.io

5

Git Workflow
Octane supports our trunk-based git workflow:

• Each piece of work originates from a JIRA Issue,
whether a new feature, bug fix, or task.

• A git branch is created for each issue.

• When commits are pushed, a remote
environment for that issue branch is
automatically created and deployed to our
Phase2 DevCloud via GitLab CI.

• When a pull-request (merge-request in GitLab)
is created for the issue, formal code review is
done in GitLab.

• When the MR passes code review, QA
testing is performed within the specific issue
environment. This allows issues to be tested in
isolation of other developers and issues.

• Once an issue has passed QA, the code is
merged into the main branch and the issue
environment is removed.

GitLab CI
Octane currently uses GitLab CI for its deployment and integration testing. The same

Common Scripts are used within the GitLab CI pipeline jobs to validate, build, and deploy

the site to the Phase2 DevCloud.

Because the CI jobs use the same scripts used locally, developers who use the local

validation and testing scripts rarely run into broken CI builds within GitLab. GitLab is also

responsible for running the comprehensive testing scripts on a regular basis (usually

nightly) to report any regressions that might not have been caught by the build tests.

GitLab CT

parent

child

Review & Test!

change to child

pull in latest parent

merge to parent

change to
parent

Kubernetes Worker Node in GKE Devcloud

Local Computer

Builder Node in GKE Devcloud

.gitlab-ci.yml
Job file

Docksal
Stacks

Local
Project
folder

docksal.env
docksal.yml

Common
Scripts

Input/File

Files

Output/Artifact

Kubernetes Pod

Local VM (hyperkit)

Kubernetes Pod

Common
Scripts

Kubernetes
Manifests

git
repository

Gitlab Runner Pod

phase2/cli
(Docksal+)

web
(apache,

nginx)
cli

(Docksal)

Docker container

Docker volume

Kubernetes pod

name

name

files
pvc

database
pvc

solr index
datadir

pvc

database
(mysql,

mariadb)

db_data
volume

solr-data
volume

cache
(memcache,

redis)

web
(apache,

nginx)

project_root
volume

(webroot and files)
Mutagen sync

cli
(Docksal)

db
(mysql,

mariadb)
memcache/

redis

solr

solr

webroot
pvc

web image
(via docker registry)

build_image

git checkout

deploy

build

Chart
Templates

6

When the issue environment is first created,

the environment (including database)

is cloned from the main environment.

This allows canonical test content to be

created and maintained within the main

environment and made available to each

issue environment.

While GitLab is responsible for initially

creating and deploying the environment to

the DevCloud cluster, once an issue branch is

created, subsequent commits to that branch

trigger the validate, build, and test scripts

running directly in the DevCloud environment.

While the initial issue environment might

take 2-3 minutes to be created and deployed,

future commits are available within the

remote issue environment in less than a

minute. Validation and build failures are

prioritized and can occur within seconds,

allowing the developer to "stay in the zone"

when working on an issue rather than waiting

for a CI process and getting distracted by

other tasks. Build tests try to stay under

5 minutes.

Git workflow (cont)

7

Phase2 DevCloud Cluster
Octane scripts create the Kubernetes

manifest files (*.yml) that are used to deploy

an environment to our Google (GKE) cluster.

Typically, each project has a persistent main

environment along with environments for

each active branch being worked on.

Scripts are also provided to monitor the

project environments within the cluster,

connect to a shell container, examine

log files, etc.

Octane Architecture

GitLab CT

parent

child

Review & Test!

change to child

pull in latest parent

merge to parent

change to
parent

Kubernetes Worker Node in GKE Devcloud

Local Computer

Builder Node in GKE Devcloud

.gitlab-ci.yml
Job file

Docksal
Stacks

Local
Project
folder

docksal.env
docksal.yml

Common
Scripts

Input/File

Files

Output/Artifact

Kubernetes Pod

Local VM (hyperkit)

Kubernetes Pod

Common
Scripts

Kubernetes
Manifests

git
repository

Gitlab Runner Pod

phase2/cli
(Docksal+)

web
(apache,

nginx)
cli

(Docksal)

Docker container

Docker volume

Kubernetes pod

name

name

files
pvc

database
pvc

solr index
datadir

pvc

database
(mysql,

mariadb)

db_data
volume

solr-data
volume

cache
(memcache,

redis)

web
(apache,

nginx)

project_root
volume

(webroot and files)
Mutagen sync

cli
(Docksal)

db
(mysql,

mariadb)
memcache/

redis

solr

solr

webroot
pvc

web image
(via docker registry)

build_image

git checkout

deploy

build

Chart
Templates

8

Testing Frameworks
Octane provides extensive help for testing.

Scripts wrap several common testing

frameworks for consistent use locally

and in GitLab:

• PHPUnit: unit, kernel, and Drupal
ExistingSite tests allow a full range
of Drupal PH code testing.

• Cypress: the primary functional testing
framework. Plugins for AXE (Accessibility)
and BackstopJS (visual regression) are
also used.

Fast tests, such as accessibility, unit, and

kernel are performed within the DevCloud

issue environments on every code commit/

push to quickly identify problems and prevent

failing code from being merged into the

master branch. Slower visual regression

testing is typically performed during the

nightly comprehensive functional tests.

The ability to quickly and easily QA and run

automated tests within each issue branch

environment is one of the key aspects of the

full Octane architecture. It focuses QA on the

specific issue being addressed in isolation of

other work being done, and keeps the main

branch clean and ready for deployment to

the client at any time.

Database Manipulation
The same common scripts used to move the

database between the main environment and

issue environments can also be used locally.

Developers can easily pull down databases

from any environment, or import databases

to any environment, including their local.

Backups of the main environment are made

on every pull-request merge to allow for easy

reverting if needed.

Integration with Outline
Phase2 uses its own Outline toolset for

building and deploying packaged design

systems of web components (html elements).

Octane integrates with Outline by providing

the tooling to bring the design system

package into the Drupal site via npm.

Common scripts are provided for updating

and building the design system and Drupal

theme both locally and in the GitLab

CI environments.

v

9

Integration with Hosting
Octane provides deployment scripts for

common hosting providers, including Acquia

and Pantheon. Typically a project is still

developed, integrated, and tested within

the Octane GitLab CI environments. When

a project is ready to push a release to the

hosting provider, a release tag is created

which triggers GitLab to build a clean

deployment artifact that is pushed into

the separate git repository of the host. Many

projects trigger this nightly to update the host

"dev" environment with the latest code on

a regular basis. Because of our trunk-based

git workflow and testing model, the main

code branch is always clean and production

releases can be done at any time and with

any frequency needed by the client.

Drupal
While many aspects of Octane can be used for any application framework, the majority

of projects using Octane are Drupal CMS projects. Octane includes a composer manifest

for Drupal core and commonly used contributed modules. Starting configuration is also

provided for common configurations such as:

• Content editor experience (Layout Builder and associated modules and config, WYSIWYG)

• Search (Search API, Solr, etc.)

• Configuration management (config split, ignore)

• Media types (image, document, remote oEmbed, etc.)

• Theme support (Claro, Olivero)

Octane is not a "distribution", but is a starter kit of building blocks for kickstarting

a Drupal project.

10

Utilizing Octane, Phase2 has decreased the

time needed to create a new client project

in Drupal from days down to hours (or even

minutes). Consistent tooling across our

projects makes it easier for developers to

move between projects or jump in and help

with complex issues. The team can focus

more time and resources on the specific client

requirements of a project rather than with the

DevOps tooling and infrastructure framework.

Summary

PHASE2TECHNOLOGY.COM DC | PDX | NYC | EVERYWHERE LINKEDIN TWITTER instagram

http://Phase2technology.com
http://www.linkedin.com/company/phase2
http://twitter.com/phase2
https://www.instagram.com/phase2tech/

