
Optimize Debugging:
From Monolith to
Distributed Environments

The #1 Productivity Challenge:

Computer bugs, contrary to popular belief, are not part of modern made
up technological terminology. The term actually refers to an event that
occurred on September 9, 1947, when Grace Murray Hopper went looking
for the source of the computer’s issue and found a moth stuck between
relay contacts in the computer. Thus ‘computer bugs’ and then just ‘bugs’
came into the technical terminology of the software engineering world,
and an important one at that.

60% of companies find that their engineers’ time is spent finding and
fixing errors. According to the Cambridge Judge Business School MBA
report, 620 million developer hours a year are wasted on debugging
software failures, at a cost of roughly $61 billion annually. The report
also notes software engineers spend on average 13 hours to fix a single
software failure.

When choosing your software’s architecture, it’s
important to consider the ease- or the challenges-

of debugging that comes with it.

This paper will show that while those at the ends
of the monolith-distributed spectrum pose very

different challenges debugging, all the challenges
ultimately stem from the same source: access to

data that is simple, quick, and safe to capture.

68% of organizations report that they face a
tradeoff between shipping software faster, but

without the data that they need to ensure optimal
performance, or to delay releases while trying to

fetch the data.

No matter which architecture you work with, the
key point remains: no matter what you do with

your code, fast, secure, and simple data access is
an absolute must.

The paper will cover all three criteria and how to
get them right

K E Y TA K E AWAY S:

©2020 Rookout

https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/
https://www.rookout.com/
https://lp.rookout.com/
https://www.computerhistory.org/tdih/September/9/
https://www.bugsnag.com/content/software-bugs-waste-time-and-money
https://www.prnewswire.com/news-releases/study-software-failures-cost-the-enterprise-software-market-61b-annually-301066579.html

With that in mind, choosing your software’s architecture is no simple task.
One important consideration when doing so is the ease, or the challenges,
of debugging that come with it. Whether it is a monolithic architecture
or a distributed system, they both present individual challenges to the
debugging process. As we analyze this architectural spectrum, this paper
will show that while they pose very different challenges debugging, all the
challenges ultimately stem from the same source- access to data that is
simple, quick, and safe to capture. We’ll discuss this common source and
find techniques to overcome it.

In order to debug your chosen architecture successfully, data is
an absolute necessity. The access to the correct data affords an
understanding into your software, of which no debugging process could
be successful without. To optimize your debugging, let’s delve into each
architecture and the challenges encountered when debugging them.

Problems of Debugging Monoliths
Monoliths, while they are inherently simpler structures, are still difficult
to debug when experiencing a lack of data. 52% of software companies
report developer productivity is hindered by legacy systems, which are
difficult to understand, thus necessitating a need for more data in order to
do so, and complicating debugging the system even further.

When compared to distributed environments, monoliths have some
advantages when it comes to debugging. The fact that a monolith has
a single code base, that often runs as a single process, makes it easy
and straightforward to run in debug mode, attach a debugger, and move
step-step-step until you find the problem. However, monoliths tend to
justify their namesake by becoming robust, heavy monsters that are too
resource intensive to run on a single machine. And step-step-stepping
through a huge legacy code base tends to become a gigantic and time
consuming task that only the most seasoned and patient developers are
willing to endure. Even a log based debugging approach hits the wall with
monoliths, as adding a single line of log will require a long and expensive
rebuild and redeploy cycle.

When attempting data capture in monolith architectures, it is important
to note that since they are typically created earlier, they often hold the
infrastructural elements of your software. Thus debugging them can
be a daunting task, as any attempt to capture data by changing and
redeploying the code may potentially hit interdependencies, leading to a
chain of malfunctions and crashes.

Within distributed systems,
when code leaves your
machine, it is near
impossible to track.

©2020 Rookout

https://www.rookout.com/
https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/
https://www.infoq.com/articles/understandability-metric-not-tracking/
https://stripe.com/files/reports/the-developer-coefficient.pdf

The key to debugging monoliths, then, is not to debug them in the now
old fashioned way. Instead, it should be about having the correct data to
understand what is happening in the system. For example, when working
on an inherited system, it is challenging to understand the old code that
was written. The correct data, for instance, will prevent the scenario in
which the developer will spend countless hours attempting to get into the
head of the person who wrote that old code, often to no success.

Problems of Debugging Distributed Architectures
Distributed systems have their own set of challenges when it comes
down to the basics of debugging them, due to their inherent structure.
Their architecture makes them complex entities and their many moving
parts cause tracking down the root cause of the issue or the bug to be
extremely tricky and complicated. Attaching to a debugger and setting a
breakpoint is just not something you can do, and debugging with log lines
has its own set of challenges.

When code leaves your machine, it is near impossible to track. Distributed
architectures, and specifically microservices based applications or
serverless applications, are often ephemeral. Servers or functions or
pods will spin up and down dynamically, and there is no host you can
remotely attach to or SSH to fetch log files. Code versions will change
dynamically, and you will spend a significant amount of time building a
logging and observability pipeline to make sure the data reported by these
applications reaches the right data sink.

When attempting data capture in distributed architectures, it is important
to find a set of tools that can address these challenges and allow you to
fetch data in real time, with a minimal amount of effort.

52% of software
companies
report developer
productivity is
hindered by legacy
systems

©2020 Rookout

https://www.rookout.com/
https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/

The Common Thread

The need to access data

The lack of data, and therefore the need to get that data, is the
underlying problem in all debugging challenges. This lack of data and
the way to resolve it is comprised of three core criteria:

1. Speed- how fast it is to get the data you need to move forward?

Organizationally speaking, data capture via logging and redeployments
often involve many levels of controls and approvals. The longer it takes,
the more elements and metrics change and - in case of a bug -- the
more damage gets accrued, all while slowing down developer velocity
and accelerating risk exposure.

From the developer point of view, the longer data capture becomes,
the less they are willing to wait for it. 68% of organizations in Digital
Enterprise Journal’s upcoming study on Enabling Top Performing
Engineering Teams reported that they are experiencing a ‘flying blind or
flying slow’ type of challenge. In other words, they are facing a tradeoff
to either ship software faster, but without the data that they need to
ensure optimal performance, or to delay releases while trying to get the
data. The longer those delays, the more developers are prone to choose
flying blind.

2. Simplicity- how simple is the process to data capture?

The most straightforward, though sometimes most difficult criterion to
get right is avoiding complexity. When developing a new application, it’s
imperative to have a clear understanding of the problem domain and the
issue you are trying to solve. The simpler and more focused the business
requirements are, the less complex the solution is going to be.

Data capture complexity can also stem from technical debt. Tech debt
needs to be minimized by keeping the code as organized, clear, concise
and well documented as possible, so different stakeholders who need to
interact with it can understand it with minimal data capture actions.

Which brings us to the process the organization goes through to get to a
new release. Quite intuitively, the simpler and shorter that process is, the
easier it will be to get the data you need (see Figure 1 below).

620 million developer hours a
year are wasted on debugging
software failures, at a cost of
roughly $61 billion annually.

©2020 Rookout

https://www.rookout.com/
https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/
https://www.dej.cognanta.com/2020/05/13/technology-innovation-snapshot-overviews-of-key-vendor-briefings-for-april-2020/
https://www.dej.cognanta.com/2020/05/13/technology-innovation-snapshot-overviews-of-key-vendor-briefings-for-april-2020/

Figure 1: Typical Data Retrieval Process

Set your
non-breaking

breakpoint
Receive your

data

#1

Run a quick
local test

Push and
open a PR

Wait for CI

Get someone
to approve

Wait for build

Deploy on the
next window

Wait for the
data

?

2

3

4

5

6

7

8

#9

3. Safety- how safe is it to retrieve your data?

 This element is made up of two specific components: generating new
releases and the need for secure access to data.

Generating new releases over and over again always poses a risk. No
matter what method you use to generate a release, whether it’s writing
new code and thus writing in new bugs, or triggering code, it’s a process
fraught with challenges. Minimizing build-test-deploy cycles contributes

significantly to narrowing the exposure.

The need for secure access to data means that you need metrics and
tracing data, but you obtain it in a controlled way as to who sees the data,
particularly in industries such as finance and healthcare where dealing
with data is a governance and compliance mega challenge.

©2020 Rookout

https://www.rookout.com/
https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/

Logging isn’t enough
Unfortunately, logging won’t solve your debugging problems, no matter
if you set more log lines or haven’t set enough. When over-logging, or
what is known as Logging FOMO, a developer writes loglines in every
possible place that they can in order to ensure they get the most amount
of data they need. While this may seem like a good idea data-wise, it
actually gives you an overload of data that is mostly irrelevant, creating
too much noise in your code and skyrocketing the costs to store and
analyze that log data. Being overly-careful with your log line placement,
or having forgotten to set a log line due to ill-preparation, doesn’t help
either. Unfortunately, no matter which type of logging you choose, it won’t
necessarily get you the data you need to help you debug in a sustainable
way.

So what do we do about it?
No matter which architecture you work with, the key point remains: no
matter what you do with your code, secure and simple data access is an
absolute must. In order to debug, you need data and in order for it to be a
smooth and easy process, you need to be able to get the data you need,
as soon as you need it.

Following the above principles, Rookout’s mission is just that - to provide
secure, fast, and simple data access, no matter what architecture or
where the code is running. By providing the developer with instant, laser-
focused data, developer teams can get data to debug any architecture
in a millisecond. As a result, our clients saw significant increases in dev
velocity, code quality and even stress factor reductions.

The use of Non-Breaking Breakpoints empowers engineers to find the
data they need on the fly, and deliver it anywhere, enabling them to better
understand and advance their software. This allows them to maintain it
much more easily and efficiently, which gives them more time to create
other features and keep up with their workloads. This whitepaper allows
access to the Rookout sandbox, to further illustrate how data can be
captured in a click, while in compliance with SOC 2 Type 2, ISO 27001,
GDPR and HIPAA certifications.

Happy debugging starts today.

TRY FREE

No matter what you do
with your code, secure and
simple data access is an
absolute must.

©2020 Rookout

https://www.rookout.com/
https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/
https://www.rookout.com/blog/logging-fomo-is-real-and-it-hurts-heres-how-to-overcome-it
https://www.rookout.com/case-studies/behalf
https://www.rookout.com/case-studies/behalf
https://www.rookout.com/case-studies/backblaze
https://youtu.be/qXV1mBFeG3U
https://app.rookout.com/org/Sandbox/debugger/project/_Dynamic_guest%7C038aaf0df7f94e33ada89c8ef0ed88dc
https://lp.rookout.com/whitepaper-try-free

