
Java Application 
Server Debugging

You’ll find that some 
production debuggers, 
such as Rookout, go 
beyond showing the data 
and offer the ability to 
export the data to an 
analytics system of your 
choice.

Java Application Servers are at the heart and soul of many enterprise software stacks. Whether it’s a 
traditional WebLogic or WebSphere server hosting monolith applications or a potentially containerized 
Tomcat server, Java offers a tried and tested approach for writing enduring software applications. 
Unfortunately, those servers are not always easy to debug, especially when applications tend to follow on the 
larger end of the scale.

The Challenges Ahead
Since Java Application Server systems are powerful 
platforms and can get complex, you need to be aware of 
three major challenges that you may encounter when 
attempting to debug them:

• Running the application on a dev server instead of
their own laptops, which makes orchestration and 
debugging harder. 

• Slow start times, which makes code changes
expensive during debug/development sessions. 
Customers report start times of over an hour (!) under 
some conditions. 

• Highly multi-threaded environments (often reaching
tens of thousands of threads). This can make using a 
classic debugger more difficult - more on that below.

©2020 Rookout

https://www.rookout.com/


Approaches to Java Debugging
There are four main approaches to debugging Java 
Application Servers- Classic Debuggers, Logging, 
Logging with Hot Swapping, and Production 
Debuggers. Each one has its own unique benefits and 
disadvantages. In this paper, we will explore each one 
of them by analyzing parameters such as ease of use, 
stability, impact on performance, and more.

Classic Debuggers
Classic Debuggers, as a debugging approach for 
Java Application Server systems, have more cons 
than pros. While Classic Debuggers allow you to skip 
builds and restarts by setting breakpoints anywhere 
in the code, their ease of use is often poor, since 
debugging a process on a remote server tends to be 
difficult.
Another downside is that Classic Debuggers often 
have a significant performance overhead, which for 
large applications can easily become prohibitive. On 
top of that, breaking into a highly multithreaded 
application is going to cause various timeouts and 
synchronization issues which may result in 
unexpected business logic failures.

Logging
Logging is simple and familiar to most developers 
from their earliest exposure to computer science, 
allowing for ease of use. Yet, it isn’t a perfect 
debugging approach. 
Once we add the logline to the applications’ 
source-code, we have to rebuild and redeploy to see 
the change take effect, both of which can take quite a 
long time.
In terms of application stability and performance, 
logging has minimal impact, unless an added logline 
is called too often, throws an exception, or causes an 
unanticipated side effect. In that case, the 
problematic logline must be removed, and again the 
application must be rebuilt and restarted to restore 
stability. 

Logging with Hot Swapping
Logging with hot-swapping is an approach that 
attempts to bridge one of the main gaps in the 
traditional logging approach: requiring a server 
restart. When using hot swapping, you change the 
source-code, rebuild, and then update the server to 
use the new version without updating.

While it sounds like magic, it comes with a steep 
learning curve, and operating hot swappers on a 
remote server, within a complex Java Application 
Server, is tricky at best. With great power comes great 
responsibility, and you can easily introduce new bugs 
or even crash the server when making so much as a 
minor mistake operating this tool.

Java servers are not always 
easy to debug, especially 
when applications tend to 
follow on the larger end of 
the scale.

©2020 Rookout

https://www.rookout.com/


Java Server Debugging Approaches

ETLApplication 
Stabulity

Application 
Performance

Skip 
Restart

Skip
Build

Ease 
of Use

Classic 
Debugger 

Logging + 
Hot Swapping

Production 
Debugger

Logging 

Production Debugging
Last but most definitely not least of the debugging approaches: production debuggers. They have 
proven themselves to be quite an effective debugging method. To begin with, their ease of use is 
unparalleled. All that has to be done is to simply add a Java Agent to your server.
Production debuggers, similar to classic debuggers, allow you to skip rebuilding your code and don’t 
require you to restart your server. They have some of the best performance characteristics around 
and even include built-in performance protections (for production use). 
In terms of application stability, production debuggers do the heavy lifting, enabling devs to insert 
breakpoints and get the data they need while ensuring their applications remain stable. 
Take it one step further and you’ll find that some production debuggers, such as Rookout, go beyond 
showing the data and offer the ability to export the data to an analytics system of your choice, such 
as AppDynamics or Elasticsearch.

Implementing in Reality
While there are multiple options for debugging Java Application Servers, for most large workloads, 
you will definitely find that Production Debugging outshines the rest. Superb ease of use combined 
with production-grade technology makes development environments more accessible than ever. 
No more constant need to redeploy and restart, just debugging freely and easily.

+ + +- - -

--

- - --

-+ +

++

+ + + +++

+

TRY FREE

©2020 Rookout

https://lp.rookout.com/whitepaper-try-free
https://www.rookout.com/



