Material Cost Reduction Approach to PLM Value

Abstract

Value can be derived from Product Lifecycle Management (PLM) Systems through improving speed to market, reducing quality costs, improving productivity and material cost reduction. In this session, we will discuss why material cost reduction should be addressed early in a value based PLM deployment and how to execute a material cost reduction strategy.

Many PLM systems are justified by the forecasted value obtained by reducing material costs through component rationalization and reuse. However, little provision is made for people being able to find and reuse components. After all, how can you reuse a component if you cannot find it?

Since material cost reduction has a direct relationship to profit and loss, it should influence the order in which process changes are deployed. Component rationalization and reuse requires classification and attribute data. Using this data, common components are identified, price variances calculated, data shared with supplies and prices negotiated resulting in lower material costs. A strategy for controlling new part number creation also must be deployed to prevent part proliferation after a component rationalization project.

Whirlpool is the #1 major appliance company leading a \$120B industry.

\$18+ billion in revenues in 2010

Products sold in more than 130 countries

71,000 employees

66 manufacturing and technology centers

World headquarters in Benton Harbor, Michigan

We grew by acquisition...

1911-1948 1948-1980 1980s 1990s 2000s Today Manufacturing Top Winning Multi-Brand, Multi-Product Technology, Consumer Global, Globalization and Whirlpool U.S. Trade Single Product, Brands, Sustainable **Brand** Expansion Single **Appliance** Maytag Customer Acquisition Company JV Inglis (Canada) **KA Purchase** China JV's & Acquired Maytag

Acquisitions **Drive Growth** JV Brasmotor (Brazil)

JV w/ Philips Roper Brand **Purchases** JV in Mexico JV in India

Polar (Poland) Whirlpool Mexico

Sales

\$2.3M (1942)

\$1.1B (1970)

\$3.4B (1985)

\$8.2B (1995)

\$20B (2007)

Many brands and associated products were integrated into one global company.

BEDROOM(S)

Clothes revitalization Room air conditioning **Dehumidifiers** Air coolers

KITCHEN / DINING

Refrigeration Dishwasher Cooking

Ventilation **Portables** Cookware

Consul

Bauknecht

LAUNDRY ROOM

Washer, dryer, sink

Clothes revitalization

Laundry storage solutions

OUTDOOR

Grills

Cooking

centers

GARAGE

Appliances

Workstations

Storage

Flooring

Storage

HVAC

BASEMENT

Water filtration **Freezers**

Air treatment

We have over 4000 people developing products in 26 countries.

Product Development Center Foot Print

Innovation is core to our corporate strategy.

From a sea of white... To a field of innovation...

For example, continual innovation is essential to improving appliance efficiency.

ANNUAL AVERAGE KILOWATT-HOUR USAGE:

Initiatives:

AVERAGE WATER USAGE IN GALLONS PER CYCLE:

Clothes Washers:

Dishwashers:

Innovation and variation increases demand for new components which we now avoid with our material strategy.

Actual Total Component Growth

Our PLM strategy was to apply information technology capabilities to materials, product architecture and products.

Product Architecture Materials Component Bill of material rationalization creation for CAD, Module and parts, assemblies New item creation interface and role Processes and reuse Target costing governance Data development Item classification Cost modeling Collaborative Change management Classification Managing classification, **Managing Managing BOMs** attributes and data architecture Capabilities **Managing Costs** Search & find Managing roles Workflow Predictable costs Component cost Complexity reduction **Benefits** reduction Sustained cost control Timeline 2008 - 2009 2009 - 2010 2010 - 2013

Material management resulted in reductions in platform and component count and improved components per product.

Materials

Component rationalization

New item creation

Data development

Collaborative

Classification

and reuse

Managing classification, attributes and data Search & find Workflow

Component cost reduction

2008 - 2009

Measurements

Targets

40% reduction

Total Components

35% reduction

Components / Product

25% improvement

Material cost reduction contributed to actual savings to fund the rest of the PLM strategy.

Whirlpool

Materials

Component rationalization

New item creation and reuse

Data development

Collaborative Classification

Managing classification, attributes and data Search & find Workflow

Component cost reduction

2008 - 2009

Results:

- 40% reductions in platforms
- 35% reduction in Components
- 25% improvement in # components / product
- 20% average reduction in component cost

Net Cash from Operating Activities

2009 \$1.5B2010 \$1.1B

Module and interface and role governance

Managing architecture Managing roles

Complexity reduction

2009 - 2010

Product

Bill of material creation for CAD, parts, assemblies Target costing Cost modeling

Change management

Managing BOMs
Managing Costs

Predictable costs
Sustained cost control

2010 - 2013

Using our component rationalization approach we lowered material costs and reduced the total number of components.

Changes to **Existing Product Materials** Determine Validate Rationalize Determine **Establish** Apply Changes to Structure **Best Cost** Specific-Competitive Compon-Cost Supplier Country Data **New Product** ations Intelligence/ Strategy ents **Targets** Sourcing Component Changes to rationalization **Supply Chain** New item creation Component cost count, volume by supplier and reuse Data development Glass component cost by diameter analysis \$600.000 12.5 Collaborative \$450,000 Classification 10 \$300,000 7.5 \$150,000 Managing 5 WAKO ELECTRONICS (... classification, ■ EMZ HANAUER DMBH & JAMESTECH COLLTD OFFICE PA BITHON FOLAND RE Z MPW INDUSTRIAL BERY. GADELIUS K.K. TOUCH SENSOR TECHNO.. # CHERRY ELECTRICAL P 2.5 # COMCAST COMMUNICATE attributes and data Search & find **Total Components** Workflow XY Scatter Chart

2011

2012

2008 - 2009

2007

2008

2009

Current PO Price

Diameter - Overall

Component cost reduction

Chart Type:

Aggregation: Tech Attribute

Goal

Indentifying similar items was essential to determining PO cost change opportunities.

Similar Component Cluster Analysis

Automatic Calc		Attribute	4	Critical	Weight Factor	Weight Null	Weight Neg	Occurances	Minimum	Maximun
Calculate 9:23	3:32 AM	Diameter - Hole	e, Mounting		0	1	0	1	0.00645	
Batch Diameter - Inside			~	1	1	1	100	0.003	0.0325	
Bearings Plain Bearing Diameter - Outside		~	1	1	1	104	0.0038	0.052832		
Neighbor Distance 1.00 \$		Drawing Numb		0	1	0	133	000002	W1029	
		Drawing Unav		0 0	0	0	126	False	False http://l	
		Drawing URL					1	126		http://1
		Features - Spe	cial		0	0	0	1	Altemat	Alternat
Save		Finish - Generi	С		0	1	0	20	3103 W	Zinc pla.
Export		Finish - Generi	c, Secondary		0	0	0	26	Unfinish	Unfinish.
Recent Selections		Form - Bearing	Surface		1	1	0	87	Full Dia	Partial
8557878		<	-1		1	1	n	n	MCLOC	WWO 1E
Item Number	Qualifier	Neighbors	Distance	Diameter - Inside		Diameter - Outside		Height	Form - Surface	Bearing
356426	Part.0	0	16.134	0.008640		0.013720		0.010920	Full Dia	ameter
8557878	Part.0	0	13.000	0.006454		0.009457		0.014685	Full Dia	ameter
8519359	Part.0	0	16.000	0.006454		0.009457		0.014685	Full Dia	ameter
92211117	Part.0	0	17.706	0.006400		0.015400		0.015700	Full Dia	ameter
9703560	Part.0	0	19.011	0.009040		0.014923		0.014224	Full Dia	ameter
9703570	Part.0	0	19.224	0.009040		0.014923		0.018288	Full Dia	ameter
2316760	Part.0	0	20.361	0.009530		0.012700		0.009530	Full Dia	ameter
9703278	Part.0	0	20.747	0.016015		0.020688		0.015824	Full Dia	ameter
2207471	Part.0	0	19.689	0.008305		0.010445		0.019050	Full Dia	ameter

Addressing material costs resulted in an average savings opportunities of 10%.

Materials

Component rationalization

New item creation and reuse

Data development

Collaborative Classification

Managing classification, attributes and data

Search & find Workflow

Component cost reduction

2008 - 2009

Small Sample of Material Savings

Material	Consolidation Lever	Complexity 2009	Complexity 2011	Savings Opportunity (hard savings only)
Valves	Flow Rates, Brackets	141 — 74	36	12-18 %
Steel Coils	Gages, Grades, specs	100860	% 402	3-5 %
Resins	Colors, Filler, Specs	38439	233	4-8 %
Tier II Electronics	Mounting, Ratings	2901 — 74	754	10-12 %
Wire Harness Components	Wire Gage, Terminals Housings	2743	1783	9-12 %
Brand Badges	Common Technology, Adhesive	326	76	10-20 %

Component rationalization benefits are sustained by reinforcing reuse which requires search and find capability.

Materials

rationalization

New item creation

and reuse

Data development

Component

Collaborative Classification

Managing classification, attributes and data

Search & find

Workflow

Component cost reduction

2008 - 2009

Robust Attribute Search and Find

Most companies load existing components into their PLM which results in inadequate search and find and limits reuse.

Materials

Component rationalization

New item creation and reuse

Data development

Collaborative Classification

Managing classification, attributes and data

Search & find

Workflow

Component cost reduction

2008 - 2009

In most PLM implementations, try finding a bearing that meets specific requirements: outside diameter, race, material, etc.

Search: Bearing

Part Number	Туре	Status	Description		
4619-640-39641		released	FC BALL BEARING ASSY JET		
4619-640-49541	drawing	released	BEARING SUPT&THERMO AS	SSY(SERVI	
4619-640-49541	assembly	released	BEARING SUPT&THERMO AS	SSY(SERVI	
4619-641-89271		released	TT BEARING		
4619-641-89272	part	released	TT BEARING A6		
4619-644-174	drawing	released	BEARING SUPPORT		
4619-644-17481	drawing	released	BEARING SUPPORT	Peopl	e can't reuse what
4619-644-17481	part	released	BEARING SUPPORT	•	
4619-644-17482		released	BEARING SUPPORT	they c	an't find!
4619-656-98011	drawing	released	BALL BEARING		
4619-656-98011	part	released	BALL BEARING		
4619-670-03651	part	obsolete	BALL BEARING HOLDER		
4619-670-03652	drawing	released	BALL BEARING HOLDER		
4619-670-03652	part	released	BALL BEARING HOLDER		
4619-670-03741	part	obsolete	BALL BEARING HOLDER 1		
4619-670-03741	drawing	released	BALL BEARING HOLDER		
4619-670-04821	drawing	released	BEARING HOLDER		
4619-670-04821	part	released	BEARING HOLDER		
4619-677-40381	drawing	released	TT BEARING PF		
4619-677-40381	part	obsolete	TT BEARING PF		
4619-677-40391	drawing	released	TT-BEARING PF		
4619-677-40391	part	obsolete	TT-BEARING PF		
4619-677-41671	drawing	released	TT-BEARING PF		
4619-677-41671	part	obsolete	TT-BEARING PF		
4619-677-50061	part	released	BEARING		
4619-677-50061	drawing	released	BEARING		

A new item creation process enabled by a workflow limits component proliferation.

New Item Creation Workflow **Materials**

Component rationalization New item creation

Data development

and reuse

Collaborative Classification

Engineer Needs Part

Managing classification, attributes and data Search & find

Workflow

Component cost reduction

Part logged **Part Complete** into Catalog with Attributes 120V Technical Data Updated **Global Part Master** Global EN **ECR** (THE Request for W12345678 W12345678 New / **Part Release** revision to ΕN **APPROVED** APPROVED GLOBAL Item # **Request for Change** assigned (GIN) Design Approval by Global Part Modulé Owner

2008 - 2009

A data development process with classification and attribute management is required for component rationalization.

Materials

Component rationalization

New item creation and reuse

Data development

Collaborative Classification

Managing classification, attributes and data

Search & find Workflow

Component cost reduction

2008 - 2009

Data is extract from drawings and entered into the database

Item Description	Status	Create User	Create Date	Update User	Diameter - Inside	Diameter - Outside	Drawing Number	Drawing URL	Height
BUSHING-HINGE	In Work	Admin	6/13/2008	dfr_api_p	6.4540 mm	9.4565 mm	8557878	http://ldesr	14.6850 mm
BEARING - SLEEVE	In Work	Admin	6/13/2008	dfr_api_p	6.2550 mm	12.7150 mm	8558877	http://ldesr	32.2500 mm
BEARING - SLEEVE BRONZE	In Work	stratpd	6/1/2009	dfr_api_p	6.2700 mm	12.7300 mm	8559101	http://ldesr	32.2500 mm
BUSHING - HINGE	In Work	Admin		dfr_api_p	8.2620 mm	12.4940 mm	8577253	http://ldesr	14.6750 mm
PLASTIC BUSHING	In Work	Admin	6/13/2008	dfr_api_p	6.4000 mm	15.4000 mm	92211117	http://ldesr	15.7000 mm
BUSHING AGITATOR SHAFT	In Work	Admin	6/13/2008	dfr_api_p	19.1150 mm	25.4400 mm	92312913	http://ldesr	33.3200 mm
SLEEVE BEARING - FGA	In Work	Admin	6/13/2008	dfr_api_p	0.6305 in	0.8145 in	9703278	http://ldesr	0.6230 in
BEARING - UPPER, CENTER	In Work	stratpd	6/1/2009	dfr_api_p	0.5020 in	0.6905 in	9703368	http://ldesr	0.5700 in

Collaborative classification and attribute management is used to facilitate organization agreement.

Materials

Component rationalization

New item creation and reuse

Data development

Collaborative Classification

Managing classification, attributes and data

Search & find Workflow

Component cost reduction

2008 - 2009

Classification Structure

Basic Functional Requirements

- Controlled, yet flexible classification structure development
- Simple process and workflow
- Role definition
- Status and security
- Inheritance

	Attribute Name	Description	Data Type	Measure	Required	Status
8	Item Number					
P	Revision					
P	Qualifier					
	Item Description					
	Legacy Item Number					
Û	3D Viewable URL	URL to 3D viewable	URL	NO UNITS	No	Approve
Û	Active Item	Has this Item had usage in the past mo	Boolean	NO UNITS	Yes	Approve
Û	Drawing Number	A unique number that identifies the dra	String	NO UNITS	Yes	Approve
Û	Drawing Unavailable	A drawing PDF is not available for this it	Boolean	NO UNITS	Yes	Approve
Û	Drawing URL	Link to latest released version of the PD	URL	NO UNITS	Yes	Approve
Û	Item Master URL	Universal Resource Locator (URL) to th	URL	NO UNITS	Yes	Approve
Û	Item Notes	Notes about the item: attributes missing	String	NO UNITS	No	Approve
Û	Item Type Code	Identifies the type of the item. a - asse	String	NO UNITS	Yes	Approve
	Length	The nominal length of an item. Perpend	Numeric	mm	No	Pending

Our strategy was to apply information technology capabilities to materials for a value based approach to PLM deployment.

Product Architecture Materials Component Bill of material rationalization creation for CAD, Module and parts, assemblies New item creation interface and role Processes and reuse Target costing governance Data development Item classification Cost modeling Collaborative Change management Classification Managing classification, **Managing Managing BOMs** attributes and data architecture Capabilities **Managing Costs** Search & find Managing roles Workflow Predictable costs Component cost Complexity reduction **Benefits** reduction Sustained cost control Timeline 2008 - 2009 2009 - 2010

2010 - 2013