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Upgrading Your Turbines for Better Performance
You want your plant operating as efficiently as possible. There are many 

types of upgrades available that will impact your AEP:

Vortex generators

Gurney flaps

Leading edge protection

Blade Add-Ons

OEM software upgrades

Parameter changes

Controller upgrades

Software & Controller 
Upgrades
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All of these available upgrades have the same goal: increased energy production.
Unfortunately, the business evaluation for such features can be complicated to manage.

OEM Upgrades

PowerUp by GE

PowerPlus by Vestas

Energy Thrust by SGRE



Page 3

You Can’t Manage What You Don’t Measure

No standardized energy 
improvement methodology 
means everyone gets different 
results

The Problem

Providers, owners, and 
independent consultants all get 
different results

01

02

Margin of error too high so you 
can’t detect small changes

03

Accurate measurement is the most critical part of making turbine upgrades. Unfortunately, it has 
been historically difficult to find a measurement method that works.
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Challenges of Measurement
With so many options for turbine upgrades, we need to measure their effectiveness—but 

simply comparing output before and after upgrades is not an effective assessment 
method. Wind is complex, which makes changes difficult to measure:

Turbine output is affected 
by many factors:

01

Wind speed

Wind direction

Wind flow characteristics

Turbine state

Number and position 
of operational 
neighboring turbines

02
03Relationships of variables with 

turbine output are complex and 
not always well-defined

Continuously varying 
conditions

Therefore, we need an analysis approach that can 
evaluate change in performance while accounting for 
differences in conditions from one period to the next.
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Elements of an 
Effective Energy 
Improvement 
Assessment

Cost-Effective

Accurate

Reproducible

Assessments may be performed multiple 
times per year, on many turbines, so they 
should not require expensive equipment.

Uncertainty should be estimated and be 
low enough to detect the magnitude of 
performance change.

The analysis should be transparent so 
that it can be reproduced independently 
and the results can be trusted.
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Baseline and Optimized Periods

Project
start

Power curve upgrade 
implemented

Calculate energy 
improvement

Baseline Period Optimized Period

Baseline Period:

In order to see if a turbine changed, we first need to 
collect a dataset to evaluate the turbine performance 
prior to the change being implemented. This is the 
baseline period.

Optimized Period:

A change is implemented, after which we continue to 
record data for a second period of time.  We call this 
the optimized period. At the end of this time, we will 
assess the energy improvement.
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Common 
Approaches
for Energy 
Improvement 
Assessment 

Hardware-Based Power Curves

Nacelle Power Curves

SCADA Data-Based Side-by-Side Analysis

02

01

03

Nacelle anemometer

Met tower, LiDAR

Test and Control turbines
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Nacelle Power Curves

• Use the turbine’s own measurement of wind 
speed from the nacelle-mounted 
anemometer

• Bin power data as a function of the 
measured wind speed

• Estimate power curve for the turbine
• Can be done before and after a change is 

made
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• Change in performance leads to change 
in the flow behind the rotor—where the 
nacelle anemometer sits

• Anemometer measures wind speed ad a 
single point, so it cannot measure 
turbulence intensity, shear, veer, etc.

• If wind conditions are different in 
baseline and optimized periods, nacelle 
power curves are not comparable

CONS

• Simplest approach
• No additional equipment or hardware 

required
• Requires only one turbine and data that 

is already being collected

PROS

Using a nacelle power curve, we may be able to detect if something changes, but we will not be able to accurately 
determine the magnitude of the change—or even whether the turbine performance got better or worse.

Conclusion:
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Hardware-Based Methods

Source: Windar PhotonicsSource: NRG Systems

LiDAR
LiDAR systems can be 
ground-based and provide data 
similar to the met tower, or they 
can be nacelle-mounted and 
always measure the wind speed 
upwind of the turbine 
regardless of the wind 
direction.

Met Tower
A met tower is installed upwind 
of the turbine in the 
predominant wind direction or 
in line with a row of turbines.  
Care needs to be taken to filter 
out only data where both the 
met tower and the turbine are 
not impacted by wakes of other 
turbines or obstructions.
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• Measure wind at a distance from the 
rotor, making them unable to capture all 
the characteristics of the wind

• Very expensive
• Time-consuming
• High uncertainty
• Requires periodic maintenance

CONS

• Continuous monitoring of wind flow 
characteristics upwind of turbine

• Some ability to measure wind shear and 
veer

PROS

Hardware-based methods address some of the problems with nacelle power curves, but they do not meet our criteria 
of being reliable, cost-effective, and reproducible. They are useful for R&D, but not as a scalable option.

Conclusion:
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SCADA
Data-Based 
Approaches
The most reliable signal 
available is the behavior 
of neighboring 
unchanged (control) 
turbines, which can be 
measured with existing 
SCADA data.

Let’s test available SCADA-based 
approaches with a sample dataset.

Mean power ratio

Power ratio binned by power

Power delta binned by power

Power delta binned by power and 
wind direction

Machine learning
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02

03
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05



Page 16

Validation Case

Test 1: Null Hypothesis Test 2: Artificial Enhancement

We set up a validation case using a 
dataset where no turbines were 
modified. We expect that if we split the 
data into baseline and optimized 
periods, the performance should be the 
same in both.

After the initial test, we applied an 
artificial enhancement to the test 
turbine power signals so we could 
compute the exact energy added, and 
then test the ability of each method to 
measure this enhancement, which came 
out to 2%.
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Validation Case

Test 1: Null Hypothesis Test 2: Artificial Enhancement

Project
Start

Test 1: Null hypothesis
Test 2: Artificial enhancement

Energy Improvement
Test 1: 0.0%
Test 2: 2.0%

Baseline Period Optimized Period
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Validation 
Dataset
Dataset description: 12 turbines from 
a row in a 145 MW plant. 

4 turbines used as test turbines.

5 turbines used as control 
turbines.

3 turbines excluded from the row 
due to significant downtime.

7 months 4.5 months 2.5 months
Data period Baseline period Optimized period

Optimized Excluded Control
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Power Ratio
Method 1: 

Power ratio fails to capture changes in ambient conditions 
that make it look like the test turbines underperformed. This 
is not captured in the uncertainty.

Conclusion:

Artificial Enhancement 2% −0.3%±0.5%

Null Hypothesis 0% −2.1%±0.5%

Test Expected 
Result

Actual 
Result

First, we’ll try averaging the power for test 
and control turbines at each point in time 
and calculate their ratio.
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Binning by Power
Method 2: 

Control turbine power

Te
st

 tu
rb

in
e 

po
w

er

Bins

Null Hypothesis

Artificial Enhancement

0%

2%

−1.5%±0.4%

−0.5%±0.4%

Test Expected 
Result

Actual Result
Binned Power Ratio

−1.6%±0.4%

−0.3%±0.4%

Actual Result
Binned Power Delta

We’ve reduced uncertainty, but still fail to predict the 
correct results.

Conclusion:

Next, we’ll look at this ratio in bins of the 
control turbine power. This will give us 
some degree of resolution to account for 
times when both test and control turbines 
are at rated power.
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Binning by Power and Wind Direction
Method 3: 

Null Hypothesis

Artificial Enhancement

0%

2%

−2.1%±0.4%

−0.2%±0.4%

Test Expected 
Result Actual Result

Even with added feature dimensions, the binned approach fails to 
capture the correct result and retains high uncertainty. 

Conclusion:

We can try including more independent 
variables, but this increases the number of 
bins, reducing the number of data points 
in each bin. This is called the curse of 
dimensionality.
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Machine Learning
Method 4: Baseline

model

Optimized 
data - IEPΣ

Null Hypothesis

Artificial Enhancement

0%

2%

0.0%±0.2%

2.0%±0.2%

Test Expected 
Result

Actual 
Result

The machine learning model was able to accurately 
predict the behavior of the farm with the lowest 
uncertainty of all methods.

Conclusion:

Finally, we’ll try using machine learning to 
model the relationship between test and 
control turbine behavior.

When we build one of these models and 
apply it to our validation case, we are able 
to successfully calculate both the null 
hypothesis and artificial enhancement, 
with uncertainties half that of the binning 
approaches.
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Machine learning 0.0%±0.2% 2.0%±0.2%

Power delta binned by power and wind 

direction
−2.1%±0.4% −0.2%±0.4%

Power delta binned by power −1.6%±0.4% 0.3%±0.4%

Power ratio binned by power −1.5%±0.4% 0.5%±0.4%

Mean power ratio −2.2%±0.5% −0.3%±0.5%

Method Null Hypothesis
Expected result = 0%

Artificial Enhancement
Expected result = 2%

A machine learning algorithm can accurately predict the power production of the test turbines as a 
function of the control turbines accounting for variation in ambient conditions—providing an 
accurate improvement measurement.

Conclusion:
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A word of caution

However, a model applied incorrectly will 
produce an incorrect result, so wind 
domain expertise is critical.

Machine learning can be a powerful tool 
for assessing the energy improvement 
from wind turbine upgrades.

WindESCo assists our customers by 
performing this analysis in a transparent 
way so that they can be confident in the 
results.
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WeBoost Basic Case Study

Increase in energy 2% 

Revenue Increase $450,000/Yr 

Revenue Increase $5,700/MW/Yr 

2% 
Improvement in 
plant output

www.windesco.com/wind-plant-increases-yearly-revenue-by-5700-mw

http://www.windesco.com/wind-plant-increases-yearly-revenue-by-5700-mw
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OEMs

9
Country

8
Customers

21
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Watch the 
Webinar

Case study: Increase your 
wind plant revenue

Want to hear more from the 
experts at WindESCo? Access 
the webinar recording:

Additional resources:

Wind Ed

Recording: Are Power Curve 
Upgrades Worth It?

How to contact us

Sam Tasker, 
VP North America Sales
617-510-0816
sam@windesco.com

www.windesco.com

https://www.windesco.com/wind-plant-increases-yearly-revenue-by-5700-mw
https://www.windesco.com/wind-plant-increases-yearly-revenue-by-5700-mw
https://www.windesco.com/blog/tag/wind-ed
https://vimeo.com/459448515/7ce572ddbf
https://vimeo.com/459448515/7ce572ddbf

