Canine High Grade Lymphoma Made Easy

Rochelle Prudic, DVM, DACVIM (Oncology) MedVet Cleveland, Ohio

Outline

- Cell biology
- Helpful terminology
- Presentation
- Pathophysiology, progression and how it relates to clinical signs
- Diagnosis, staging and testing
- Prognostic indicators
- T versus B cell
- Treatment options & cost estimates for common protocols
- Expected outcomes

Size (and maturity) matters

- Large cell and intermediate cell lymphoma both come from immature forms
 - greater ability to divide (pluripotent)
 - More aggressive disease course

Large cell (blast)

Intermediate-large cell

Prolymphocyte

- Lymphocyte (small cell)
 - More mature (lymphocytic lymphoma)
 - Less ability to divide
 - Less aggressive disease course

Small Lymphocyte

Lymphocyte

Grade versus stage

- Grade
 - Grade in lymphoma is aggressiveness of the cells under the microscope
 - Intermediate to large cell lymphoma is high grade
 - Lymphoma is one of the few cancers whose grade can be shown with cytology (not biopsy)
- Stage is where it is in the body and how affected the patient is

High grade lymphoma stages

- Substage is how clinically affected the patient is
 - Substage A- not ill
 - Substage B- clinically ill
- Stage I one lymph node
- Stage II- two or more nodes on one side of the diaphragm
- Stage III- Nodes on both sides of the diaphragm
- Stage IV- Liver and or Spleen +/- nodes
- Stage V- ANYWHERE ELSE: bone marrow, eye, lungs, GI, CNS....

Stage V lymphoma (involving the bone marrow) versus leukemia

The difference is where the disease starts first... and the prognosis

- Leukemia:
 - Bone marrow pleuripotent cells that then move out to the circulation
 - MST with treatment \rightarrow days
- Stage V lymphoma
 - starts in lymphoid organs with pleuripotent cells and goes back to the bone marrow
 - MST with treatment \rightarrow 1 year

Helpful features:

- -Lymphoma patients \rightarrow usually have bigger nodes first
- -Leukemia patients -> smaller nodes, clinically ill, more significant cytopenias

High grade lymphoma immunophenotype (B & T cell)

- B cell
 - Born and mature in the bone marrow (B)
 - Antibody production and memory
 - Lymphoma breeds
 - Rottweilers (Europe), Bernese mtn dog, Dobermans +/goldens

High grade lymphoma immunophenotype (B & T cell)

• T cell

- Born in the bone marrow
- Mature in the thymus (T)
- Cytotoxic, memory, helper, regulatory cells
- Calcium signaling
- Lymphoma breeds
 - Boxers, labs, goldens

Presenting complaint

- "Lumps" → lymphadenopathy
 - DDX generalized or "multicentric" lymphadenopathy....
- ADR→ vague waxing & waning lethargy
- Gastrointestinal signs → hyporexia, diarrhea, vomiting

Progression and pathophysiology of clinical signs in untreated patients

Pathophysiology & Clinical Signs Clinically well Clinical signs Critical \rightarrow Further expansion of lymphatic centers (organomegally/lymphadenopathy) Lymphatic obstruction: edema/effusion Clonal expansion of large lymphocytes/blasts Cytokine release: lethargy/fever Structural changes of PTHrP: hypercalcemia infiltrated lymphatic organs Immune mediated disease Vasculitis

Pathophysiology & Clinical Signs Clinically well Critical \rightarrow Clinical signs Further expansion of lymphatic Target organ centers dysfunction/failure; (organomegally/lymphadenopathy) Bone marrow Gastrointestinal Clonal expansion of large Lymphatic obstruction: Lung lymphocytes/blasts edema/effusion Liver Kidney (infiltration, Ca) Structural changes of Cytokine release: lethargy/fever Brain infiltrated lymphatic PTHrP: hypercalcemia organs Hemorrhage, coagulopathy, DIC, ARDS Immune mediated disease +/- sepsis if cytopenia

Vasculitis

Next steps...

- Measure those nodes
- Baseline exam and vitals
- Cytology \rightarrow don't delay

Understanding lymph node cytology

- Get to know the normal population
 - 80-90% small lymphocytes
 - Intermediate to large lymphocytes <10-15 % are ok
 - Vary with lymph node inflammatory status
 - Loss of monomorphic small population
 - Potential visitors in reactivity 5%
 - Macrophages
 - Neutrophils
 - Plasma cells (Mott's cells)
 - Mast cells

Hate lymph node cytology? Don't panic- Find a friendly neutrophil...

Image Source: https://www.ksvdl.org/resources/news/diagnostic_insights/march2020/cytologic-evaluation-peripheral-lymph-node-aspirates.html

MEDVET

Remember population numbers in a normal node

Image Source: https://www.ksvdl.org/resources/news/diagnostic_insights/march2020/cytologic-evaluation-peripheral-lymph-node-aspirates.html

MEDVET

Lymph node cytology

To stage or not to stage...

- Cytology
- CBC, Chem (Ica if PU/PD), UA
- +/-
- Chest x-rays
- Abdominal ultrasound
- Bone marrow
- Advanced cytologic or histopathology
 - Biopsy (rare in high grade lymphoma)
 - Molecular testing (PARR/FLOW)

PARR (PCR for antigen receptor rearrangement)

- Clonal test of antigen receptors
- Can be run on any slide you make- dead cells allowed!
- Tests for two things:
 - Clonality
 - Normal lymph cells have receptors to look for specific antigens
 - If all the receptors are the same \rightarrow all from same clone \rightarrow lymphoma (clonal)
 - If all the receptors are different (healthy mix) \rightarrow likely inflammation (polyclonal)
 - Immunophenotype
 - The receptor area being tested also helps decipher B versus T
 - Does not decipher B and T subtypes (helper vs cytoxic)

FLOW cytometry

- Requires live cells in media
 - Serum, NaCL→ you can make at your hospital
 - Blood, lymph, effusion, CSF
- Two main components
 - Adds anti-receptor antibodies
 - B versus T: plus other receptors for prognosis
 - Bone marrow progenitor markers for leukemia
 - Uses light refraction:
 - Size
 - Complexity
- Clinical immunology laboratory at CSU
 - Online specimen submission instructions
 - Sent overnight with a cold pack for delivery M-F
 - Do not freeze!

FLOW CYTOMETRY RESULTS

Date of flow cytometry assay	2/11/202	21	%Dead cel	ls <i>12</i>
		Small to intermediate sized cells	Intermediate to large sized cells	Reference interval for smal cells in a canine lymph
%Cells in gate		14	86	node**
T cell subset: CD4		28	95	21 - 45
T cell subset: CD8		6	1	6 - 20
Pan T cell: CD3		37	97	35 - 74
Pan T cell: CD5		37	97	35 - 74
B cell: CD21		60	2	26 - 58
Monocytes: CD14			0	<5
Neutrophils: CD4+CD5-			0	<5
Precursor neoplasm/ acute CD34	+MHCII-	0	0	0
T zone cells: CD5	+CD45-	0	0	0
Aberrant T cell: CD4+CD8+		0	0	0

The flow cytometry study revealed a homogeneous population of CD4 T cells. These findings are diagnostic for T cell lymphoma/leukemia. Data from our laboratory indicates that the median survival for dogs with this phenotype of lymphoma is 150 to 180 days from diagnosis when treated with a multi-drug protocol (Avery et al, JVIM, 28:538, 2014).

FLOW versus PARR

- Costs similar (\$250-300 with shipping)
- Flow provides more info
 - Size, immunophenotype, additional molecular markers that helps prognosis
 - Helpful in stage V lymphoma versus leukemia
 - Higher sensitivity than PARR
 - Requires live cells that safely make the trip M-F
- PARR
 - Less prognostic information (no information on size, less specific markers)
 - Can be done on slides/dead cells so may be more feasible on weekends or with pre-existing samples

Diagnosed....

What to expect?

Prognostic indicators for your patients

- Stage V (back to the bone marrow and non-lymphatic organs)
 - Beware the weird ones \rightarrow CNS, Intestinal etc....
- Substage B
 - Treat early, do better
- Immunophenotype
 - B versus T cell
 - NOT SO FAST!

The B cell vs T cell conundrum in large cell lymphoma

- Previous literature
 - T cell terrible, B cell better
 - Treated patients
 - B cell MST 1 year
 - T cell MST 6 months
- New concepts:
 - Molecular identity testing (FLOW) is giving us more data
 - Best protocol for immunophenotypes (B vs T)

The B cell vs T cell discussion

• New concepts

- Best protocol for immunophenotypes (B vs T)
 - MDR pumps increased in T cell lymphomas
 - MDR pump utilizing drugs:
 - Doxorubicin, Vincristine, Prednisone (CHOP anyone?)
 - T cell protocols successful with less MDR sensitive drugs

MEDVET

Lymphoma myths not associated with prognosis

- Lymph node size/number
- "Metastasis"
 - (please don't use the "M" word in lymphoma)
- Spleen/Liver involvement (stage IV)

Alleviation of clinical signs \rightarrow cytotoxic therapy

They say laughter is the best medicine, unless you have cancer, in which case chemotherapy is more effective

Goals with treatment

- Clinical remission
- Minimal adverse effects
- Developing a plan that fits both the patient and client
 - Finances
 - Travel
 - Comorbidities
 - Patient disposition

Time to treat: Prednisone

Prednisone

- MOA
 - Direct lympholytic via steroid receptor \rightarrow CELL DEATH
- Understand the role of Prednisone in chemotherapy resistance
 - MDR pumps again...

What to know about starting prednisone

- Treat if diagnosed
- Treat if sick
- Treat if pursuing chemotherapy \rightarrow soon
 - Two weeks or so...

Discuss with owner/caregiver

- May make advanced testing non-diagnostic
- May cause resistance if they wait > 1 month to treat
- Dose
 - Prednisone 1 1.5 mg/kg (don't go over 60 mg/dog) SID
 - Half the dose for BID
 - Higher dosages don't result in better response

Elspar (L-asparaginase)

- Enzymatic drug
 - Functions to remove food source from neoplastic lymphocytes

Elspar (L-asparaginase)

- May last for 1-3 weeks on average
- Low risk of side effects with SQ injection
- Uses
 - Sick patient/ER
 - While awaiting molecular testing for subtype (after confirming lymphoma)
 - To allow owner's time to consider chemotherapy
 - Palliatively as an add on to prednisone therapy
- Loses effectiveness after 2-3 dosages
- Cost \$350-450 per dose

Multi-agent chemotherapy (standard of care)

- CHOP or LOPP
 - Rotating drug protocol (weekly to every other week for LOPP) typically over 5 months
- Side effects seen in < 20% of patients
 - 3-5 days post therapy → mostly mild GI when observed
 - 7 days post therapy → increased risk of cytopenia
- 90% Response rate, MST 1+ years
- Average total cost \$5500-7000 (based on patient size), \$350-850 weekly over 5 months

Single-agent chemotherapy

- Doxorubicin, CCNU, Tanovea
 - one treatment every 3 weeks over 5 months
- Side effects seen in < 20% of patients
 - 3-5 days post therapy→ mostly mild GI when observed
 - 7 days post therapy → increased risk of cytopenia
- 70- 90% Response rate, MST 6-9 months
- Average total cost \$3500-5500 (based on patient size/drug)
- Helpful to have immunophenotype when selecting drug

Overall prognosis with various treatment options

- CHOP/LOPP (+/- Elspar) 1- 1.5 year MST
- Single agent/drug (+/- Elspar) 6-9 months MST
- Elspar/Pred 2-4 months MST
- Prednisone 2 (+/-) months MST but improved QOL

1. The top differential for generalized lymphadenopathy in the dog is;

- A. Lymphoma
- B. Tick borne disease
- C. Reaction/inflammatory

1. The top differential for generalized lymphadenopathy in the dog is;

A. Lymphoma

2. In general, what size lymph cells are associated with high grade lymphoma?

- A. Intermediate and large cells
- B. Small cells

2. In general, what size cells are associated with high grade lymphoma;

A. Intermediate and large cells

3. The difference between acute leukemia and stage V lymphoma is:

- A. The size of the cells
- B. Where the cancer starts in the body

3. The difference between Leukemia and Stage V lymphoma is

B. Where the cancer starts in the body

4. In a normal lymph node, the cells that are present in the highest number (90%) are;

- A. Small lymphocytes
- B. Large lymphocytes/lympoblasts
- C. neutrophils

4. In a normal lymph node, the cells that are present in the highest number (90%) are;

A. Small lymphocytes

5. Do NOT give Prednisone if ;

- A. The patient is sick
- B. The patient is diagnosed
- C. The patient is starting treatment soon (< 2 weeks)
- D. The owner is hoping to perform FLOW prior to additional therapy

5. Do NOT give Prednisone if ;

D. The owner is hoping to perform FLOW prior to additional therapy

6. The benefit of PARR over FLOW is;

- A. You can use dead cells or a previous slide
- B. More prognostic information

6. The benefit of PARR over FLOW is;

A. You can use dead cells or a previous slide

MedVet Cleveland West M-Th 216.362.6000

