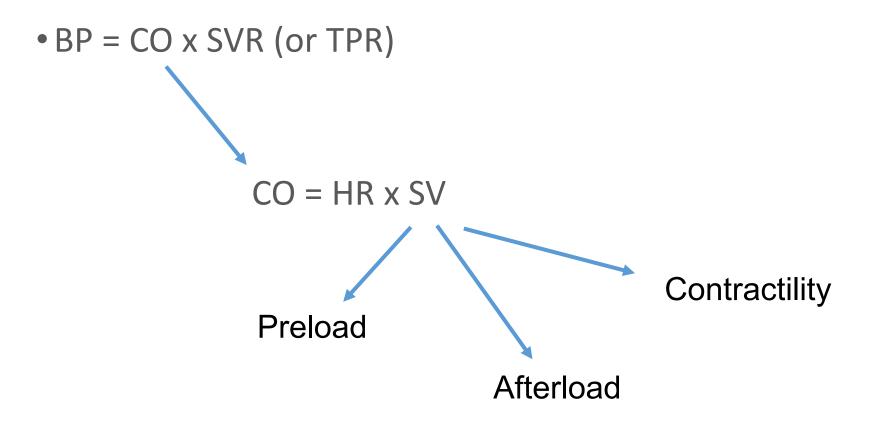
Managing Common Physiologic Alterations During Anesthesia

Morgan Oakleaf, DVM, MS, cVMA WestVet Animal Emergency and Specialty Center Boise, Idaho morgan.oakleaf@westvet.net

Overview

Blood pressure

- Hypotension
- Hypertension
- Bradycardia
- Tachycardia
- •Hypoxemia
 - Hypoventilation
- Thermoregulation
 - Hypothermia
 - Hyperthermia


Recognition/MonitoringDifferentialsTreatment

L.WESTVET

Blood Pressure

What is blood pressure?

How do we measure?

- •Non-invasive ("NIBP")
 - Oscillometric
 - Doppler/Sphygmomanometry
 - Pulse oximeter (plethysmography)
- Invasive
 - Direct arterial catheterization

NIBP (Oscillometric)

- Advantages
 - Easy
 - Non-invasive
 - Correlates well under certain circumstances
- Disadvantages
 - Inaccurate?
 - Intermittent
 - No waveform
 - Artifacts/errors:
 - \circ Motion
 - \circ Heart rate
 - \circ Anatomy
 - $\circ \, \text{Size}$
 - \circ Placement

Cuff width should be approximately 40% of the circumference of the limb

- Too small? Overestimates BP
- Too large? Underestimates BP
- Too loose? Overestimates BP
- Too tight? Underestimates BP

WFSTVFT

Doppler/Sphygmomanometry

- •Advantages:
 - Easy
 - Accurate (with trained personnel)
 - Having a doppler in place prior to an arrest event has been shown to correlate with faster recognition of cardiopulmonary arrest and therefore more rapid intervention and subsequently more positive outcomes
- Disadvantages
 - Can be annoying and "finicky" to place
 - Signal prone to interference/artifact
 - Signal difficult to acquire in hypotensive patients!

Invasive/Direct BP

- •How does it work?
 - A catheter is placed directly within an artery (most often distal metatarsal, but also distal metacarpal, coccygeal, auricular, brachial or femoral arteries)
 - Intra-arterial catheter is connected to a blood pressure transducer which converts the pressure signal to a visual waveform

Invasive/Direct BP

- Advantages
 - Continuous
 - Provides waveform (can pick up additional information from this)
 - "Gold Standard"
- Disadvantages
 - Technically difficult to place
 - Requires special equipment (transducers, IBP channel on monitor)
 - Catheter risks: infection, shearing, inadvertent drug administration, clots, necrosis of distal limb, position changes, user error, cost, etc.

L.WESTVET

Poll Question 1

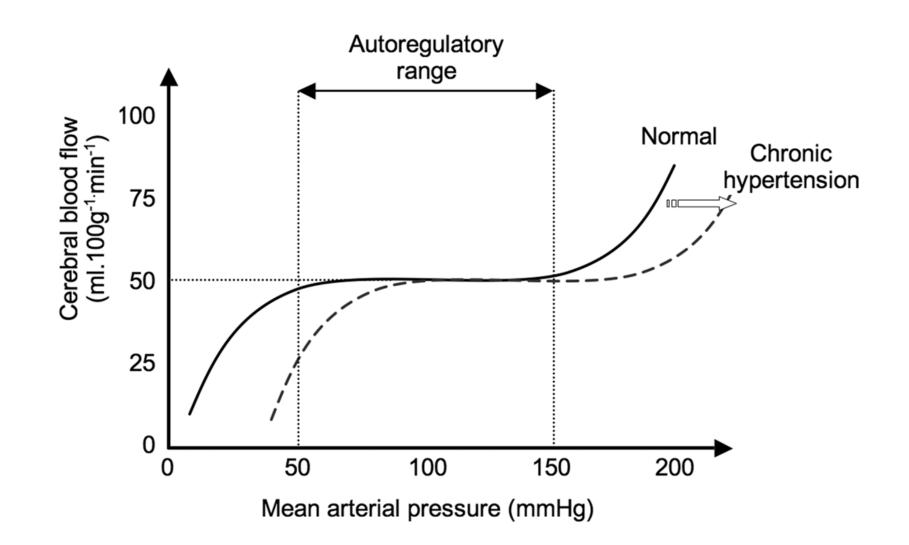
What is hypotension?

- •Blood Pressure = Systolic, diastolic and mean arterial pressure S/D (M)
- •Definition: "Low blood pressure"
 - Depends on:
 - Patient age
 - Size
 - Other comorbidities

MAP = 1/3 (SAP - DAP) + DAPOR MAP = 1/3 systolic + 2/3 diastolic

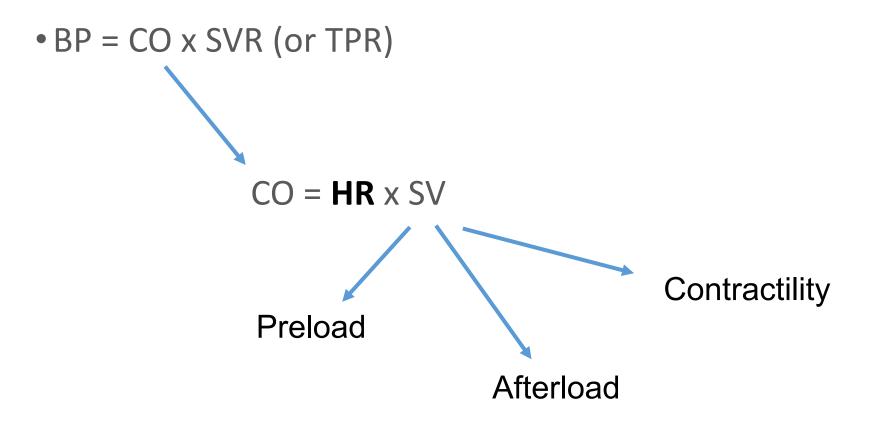
*Diastolic pressure plays an important role in the calculation of mean arterial pressure! *Most accurate/effective to use MAP when evaluating blood pressure

- •Generally MAP <70mmHg
- Pediatric patients MAP ~<60mmHg
- •Hypertensive or very large patients, MAP ~<80mmHg


WESTVET

What about hypertension?

• Differentials:


- Pain/nociception
- Light anesthetic plane
- latrogenic (i.e. dexmedetomidine)
- Hyperthermia
- Endocrine disease
 - Hyperthyroidism
 - Hyperadrenocorticism
 - Diabetes mellitus
 - Hyperaldosteronism
 - Pheochromocytoma
- Other causes:
 - AKI/CKD
 - Pharmacologic:
 - Phenylpropanolamine
 - Steroids

L.WESTVET

L.WESTVET

Why does hypotension occur?

Bradycardia

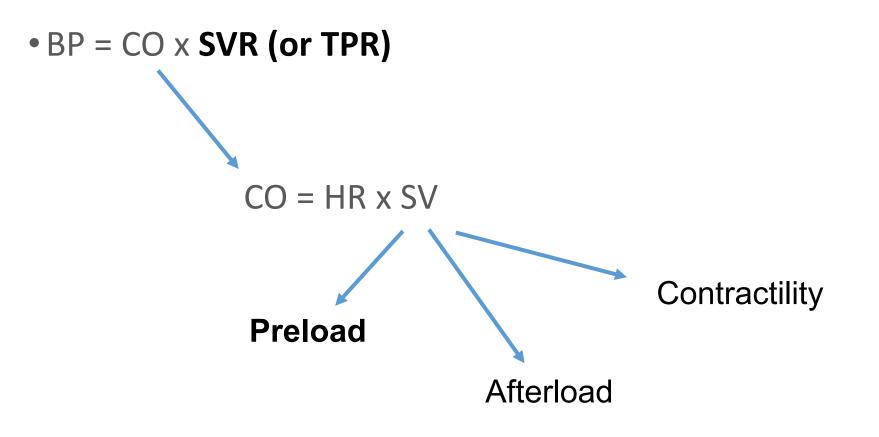
• Differentials:

- Pharmacologically-induced (i.e. opioids, alpha 2's)
- Increased vagal tone
- Cardiogenic (sick sinus syndrome, AV block)
- Metabolic derangements (hyperkalemia, etc.)

• Treatment:

- Treat the underlying cause!
- Anticholinergics
 - > what about when dexmedetomidine is used?

Tachycardia

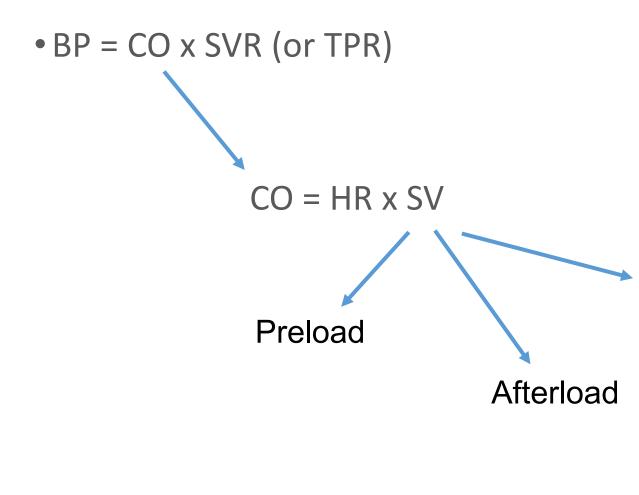

• Differentials:

- Nociception
- Pharmacologically-induced (i.e. anticholinergics, alfaxalone, ketamine, etc.)
- Hypovolemia
- Hypoxemia
- Hyperthermia
- Cardiogenic (SVT, etc)
- Endocrine/metabolic disease (pheochromocytoma, hyperthyroidism, etc.)

•Treatment:

- Treat the underlying cause!
- Pain control (i.e. opioid bolus, positioning, etc.)
- Fluid bolus (if appropriate)

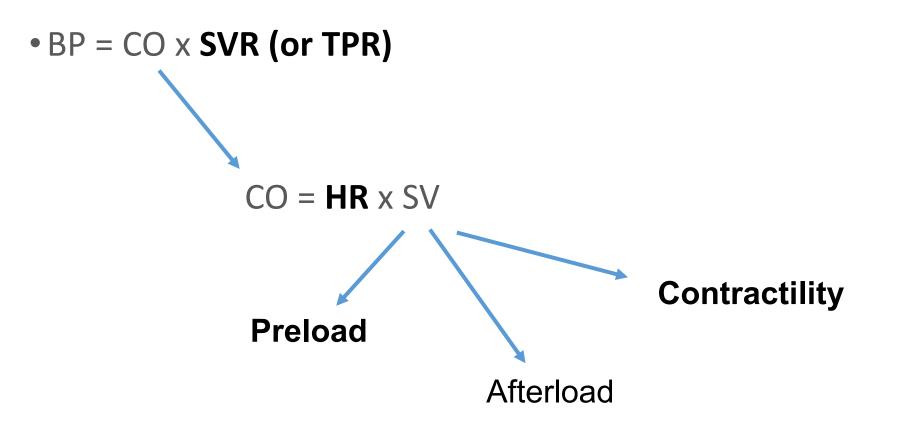
Factors impacting preload


- •Hypovolemia
- •Hemorrhage
- Positive pressure ventilation

• Pharmacologic:

- Propofol
- Alfaxalone
- Acepromazine
- Inhalants*

Why does hypotension occur?


Contractility: The strength, force or vigor of the heart muscle during systole

Pharmacologic causes of decreased contractility: Inhalants***

Increased: Inotropes

L.WESTVET

- 1. Assess anesthetic depth and decrease when able
- 2. Assess HR treat if bradycardic (and appropriate based on patient and prior drugs administered)
- 3. Initiate crystalloid (or colloid) fluid bolus if appropriate
- 4. Initiate inotropic/vasopressor support*
- 5. Other

1. Assess anesthetic depth and decrease when able

- 2. Assess HR treat if bradycardic (and appropriate based on patient and prior drugs administered)
- 3. Initiate crystalloid (or colloid) fluid bolus if appropriate
- 4. Initiate inotropic/vasopressor support*
- 5. Other

- 1. Assess anesthetic depth and decrease when able
- 2. Assess HR treat if bradycardic (and appropriate based on patient and prior drugs administered)
- 3. Initiate crystalloid (or colloid) fluid bolus if appropriate
- 4. Initiate inotropic/vasopressor support*
- 5. Other

- 1. Assess anesthetic depth and decrease when able
- 2. Assess HR treat if bradycardic (and appropriate based on patient and prior drugs administered)
- 3. Initiate crystalloid (or colloid) fluid bolus if appropriate
- 4. Initiate inotropic/vasopressor support*
- 5. Other

- 1. Assess anesthetic depth and decrease when able
- 2. Assess HR treat if bradycardic (and appropriate based on patient and prior drugs administered)
- 3. Initiate crystalloid (or colloid) fluid bolus if appropriate
- 4. Initiate inotropic/vasopressor support*
- 5. Other

- 1. Assess anesthetic depth and decrease when able
- 2. Assess HR treat if bradycardic (and appropriate based on patient and prior drugs administered)
- 3. Initiate crystalloid (or colloid) fluid bolus if appropriate
- 4. Initiate inotropic/vasopressor support*
- 5. Other

Other treatment considerations:

Run an iStat, blood gas, etc.

- \circ pH:
 - Acid/base disturbances can interfere with the body's responses to drugs (i.e. inotropes)
 - Correct by evaluating primary disturbance
- \odot Electrolytes:
 - Ionized calcium (iCa²⁺) important for cardiac contractility
 - Potassium
 - Magnesium

Poll Question 2

Catecholamine Receptors

Receptor	Effect
Alpha - 1	Excitatory to smooth muscle (vasoconstriction)
Alpha - 2	Central effects (i.e. sedation)
Beta - 1	Excitatory to cardiac muscle (inotropy)
Beta - 2	Inhibitory to smooth muscle (bronchodilation)

Catecholamine Receptors

Receptor	Effect
Alpha - 1	Excitatory to smooth muscle (vasoconstriction)
Alpha - 2	Central effects (i.e. sedation)
Beta - 1	Excitatory to cardiac muscle (inotropy)
Beta - 2	Inhibitory to smooth muscle (bronchodilation)

Drug	Alpha-1	Beta-1	Beta-2	СО	HR
Dopamine	++ (dose dependent)	++	++	+++	+
Dobutamine	0	+++	0	+++	+
Norepinephrine	+++	++	0	0*	0
Epinephrine	+	++	++	++	++
Phenylephrine	+++	0	0	0*	0
Ephedrine	++	+	+	++	++
Isoproteronol	0	+++	+++	+++	+++

Drug	Alpha-1	Beta-1	Beta-2	СО	HR
Dopamine	++ (dose dependent)	++	++	+++	+
Dobutamine	0	+++	0	+++	+
Norepinephrine	+++	++	0	0*	0
Epinephrine	+	++	++	++	++
Phenylephrine	+++	0	0	0*	0
Ephedrine	++	+	+	++	++
Isoproteronol	0	+++	+++	+++	+++

Drug	Alpha-1	Beta-1	Beta-2	СО	HR
Dopamine	++ (dose dependent)	++	++	+++	+
Dobutamine	0	+++	0	+++	+
Norepinephrine	+++	++	0	0*	0
Epinephrine	+	++	++	++	++
Phenylephrine	+++	0	0	0*	0
Ephedrine	++	+	+	++	++
Isoproteronol	0	+++	+++	+++	+++

Drug	Alpha-1	Beta-1	Beta-2	СО	HR
Dopamine	++ (dose dependent)	++	++	+++	+
Dobutamine	0	+++	0	+++	+
Norepinephrine	+++	++	0	0*	0
Epinephrine	+	++	++	++	++
Phenylephrine	+++	0	0	0*	0
Ephedrine	++	+	+	++	++
Isoproteronol	0	+++	+++	+++	+++

Drug	Alpha-1	Beta-1	Beta-2	СО	HR
Dopamine	++ (dose dependent)	++	++	+++	+
Dobutamine	0	+++	0	+++	+
Norepinephrine	+++	++	0	0*	0
Epinephrine	+	++	++	++	++
Phenylephrine	+++	0	0	0*	0
Ephedrine	++	+	+	++	++
Isoproteronol	0	+++	+++	+++	+++

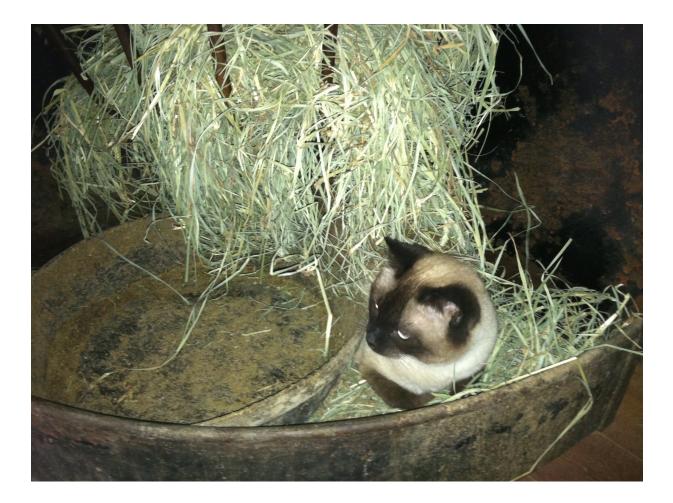
Drug	Alpha-1	Beta-1	Beta-2	СО	HR
Dopamine	++ (dose dependent)	++	++	+++	+
Dobutamine	0	+++	0	+++	+
Norepinephrine	+++	++	0	0*	0
Epinephrine	+	++	++	++	++
Phenylephrine	+++	0	0	0*	0
Ephedrine	++	+	+	++	++
Isoproteronol	0	+++	+++	+++	+++

Sympathomimetics

Drug	Alpha-1	Beta-1	Beta-2	СО	HR
Dopamine	++ (dose dependent)	++	++	+++	+
Dobutamine	0	+++	0	+++	+
Norepinephrine	+++	++	0	0*	0
Epinephrine	+	++	++	++	++
Phenylephrine	+++	0	0	0*	0
Ephedrine	++	+	+	++	++
Isoproteronol	0	+++	+++	+++	+++

Hypoxemia

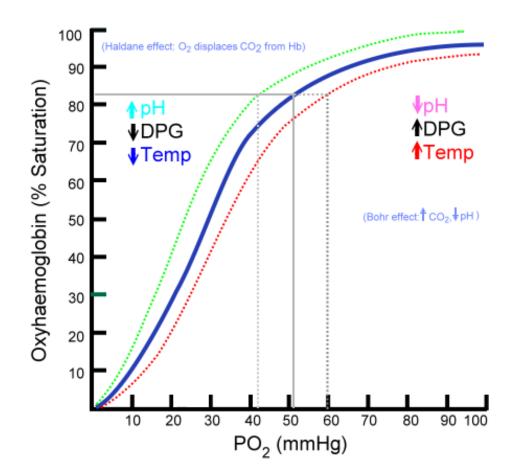
Poll Question 3


L.WESTVET

Hypoxemia

- *Hypoxemia*: decrease in the partial pressure of oxygen in the blood
 - Resting PaO_2 in "normal" awake animals at sea level = 80 100mmHg.
- *Hypoxia:* low O₂ at the tissue level
- •5 causes of hypoxemia
 - 1. Low F_iO_2
 - 2. Hypoventilation
 - 3. Diffusion impairment
 - 4. V/Q mismatch
 - 5. Shunt

Poll Question 4



Is my patient hypoxemic?

Monitoring tools:

- Arterial blood gas (ideal) = P_aO₂ < 60mmHg - 80mmHg (severe)
- $S_pO_2 < 95\%$ = hypoxemia
- Mucous membrane color
 - Cyanosis = represents presence of deoxygenated hemoglobin in the tissues
 - Limitations?

L.WESTVET

Alveolar gas equation

- $\bullet P_A O_2 = F_i O_2 (P_b P_{H2O}) P_a CO_2 / 0.8$
- $\cdot P_a O_2$ = measured value (blood gas)
- • $P_AO_2 P_aO_2 = A$ -a gradient
 - o <10mmHg indicates that there is minimal disruption to the integrity of the alveolar-capillary membrane
 - >10mmHg (aka "wide gradient") indicates that there is a problem with the alveolar-capillary membrane barrier which is impacting gas exchange

5 Causes of Hypoxemia

- **1.** Low F_iO_2
- 2. Hypoventilation
- 3. Diffusion impairment
- 4. V/Q mismatch
- 5. Shunt

Low F_iO_2

•Not usually encountered during general anesthesia, however, important to consider!

5 Causes of Hypoxemia

- 1. Low F_iO_2
- 2. Hypoventilation
- 3. Diffusion impairment
- 4. V/Q mismatch
- 5. Shunt

Hypoventilation

- Definition: When V_A is low relative to metabolic rate, resulting in a rise in the P_aCO_2
- Increased ETCO₂ on capnograph
- Characteristics:
 - Normal A-a gradient
 - Oxygen responsive
 - P_aCO₂ increased

Hypoventilation

• Differentials:

- Pharmacologically induced
 - General anesthesia (inhalants and injectables)
 - Opioids
- •Other:
 - Trendelenburg
 - Abdominal insufflation (laparoscopic procedures)
 - Obesity
 - MRI/CT straps
 - Decreased lung compliance

•Treatment:

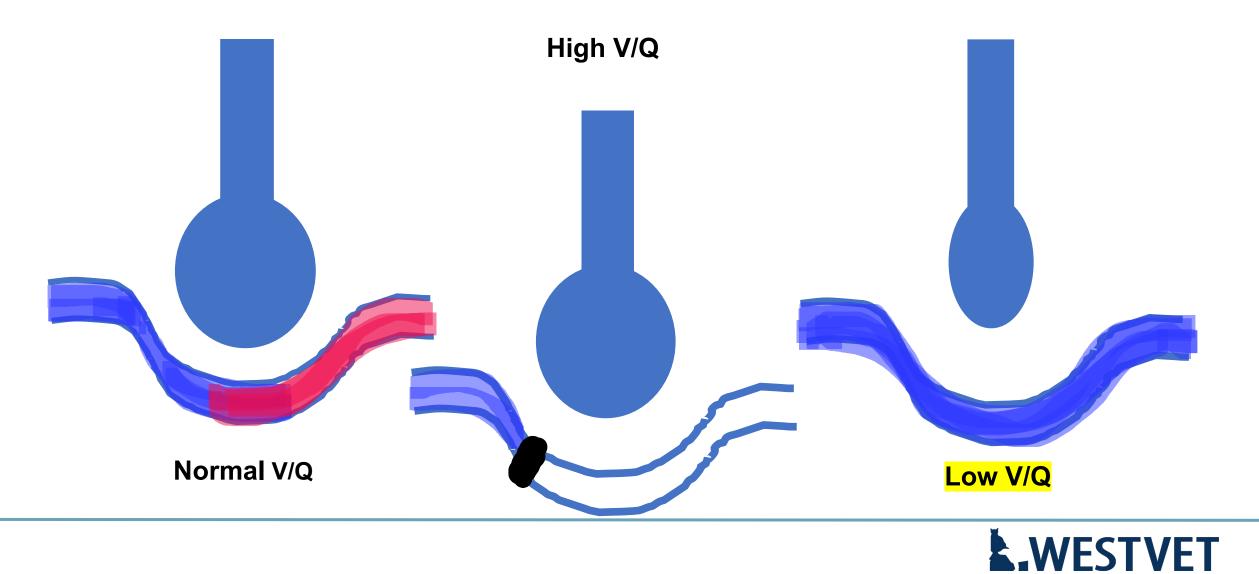
- Increase ventilation
 - Mechanical ventilation
 - Change patient positioning
- •Supplemental O₂ (i.e. for sedations)
 - A-a gradient is within normal range; this indicates that the alveolar-capillary interface, and thus diffusion, is normal

5 Causes of Hypoxemia

- 1. Low F_iO_2
- 2. Hypoventilation
- **3. Diffusion impairment**
- 4. V/Q mismatch
- 5. Shunt

Diffusion Impairment

- Inflammation, fibrosis, interstitial lung disease, emphysema (humans)
- •Characteristics:
 - •Wide/elevated/large A-a gradient
 - Generally oxygen responsive
 - P_aCO₂ is normal


5 Causes of Hypoxemia

- 1. Low F_iO_2
- 2. Hypoventilation
- 3. Diffusion impairment

L-WESTVET

- 4. V/Q mismatch
- 5. Shunt

V/Q Mismatch

V/Q Mismatch

•Characteristics:

- Wide/elevated/large A-a gradient
- Generally oxygen responsive

• Differentials:

- Atelectasis*
- Interstitial lung disease
- Asthma
- COPD
- Pulmonary hypertension

•Treatment:

- Ventilation strategies
 - Increased inspiratory time
 - Decreased flow rate
 - Alveolar recruitment maneuvers
 - PEEP
- Patient positioning
 - Reverse Trendelenburg

WFSTVFT

5 Causes of Hypoxemia

- 1. Low F_iO_2
- 2. Hypoventilation
- 3. Diffusion impairment
- 4. V/Q mismatch
- 5. Shunt

Shunt

- Anatomic shunt
 - Tetralogy of Fallot
 - VSD
 - ASD
- Characteristics:
 - Wide/elevated/large A-a gradient
 - Not oxygen responsive
 - P_aCO₂ is normal

Thermoregulation

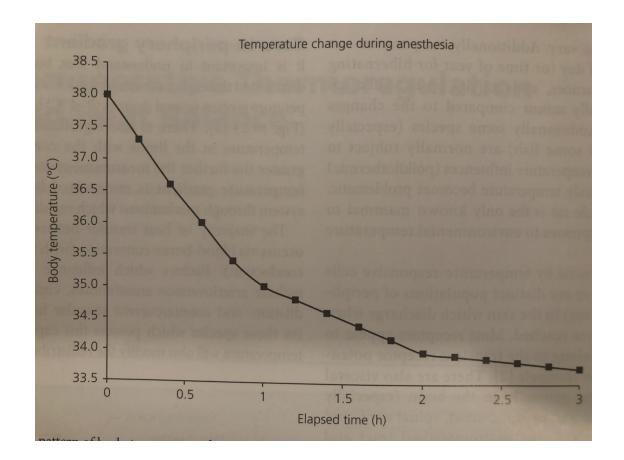
- •Consequences of hypothermia during anesthesia:
 - Risk of anesthetic overdose
 - Prolonged recovery
 - Post-operative wound infection
 - Coagulation impairment
 - Shivering:
 - Common cause of discomfort in recovery (*humans)
 - \circ O₂ consumption dramatically increased
 - Cardiac complications; arrythmias/arrest

Hypothermia

- •At risk patients:
 - Large surface area: body ratio
 - Young animals/neonates
 - Thin skin/coat
 - Radiology
- •Wet
 - Marine animals
 - Sweat (horses)
 - Surgical scrub/alcohol
 - Dentistry, arthroscopy, etc.

WESTVET

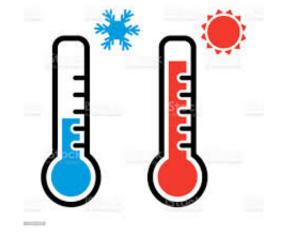
Poll Question 5



Hypothermia

Treatment

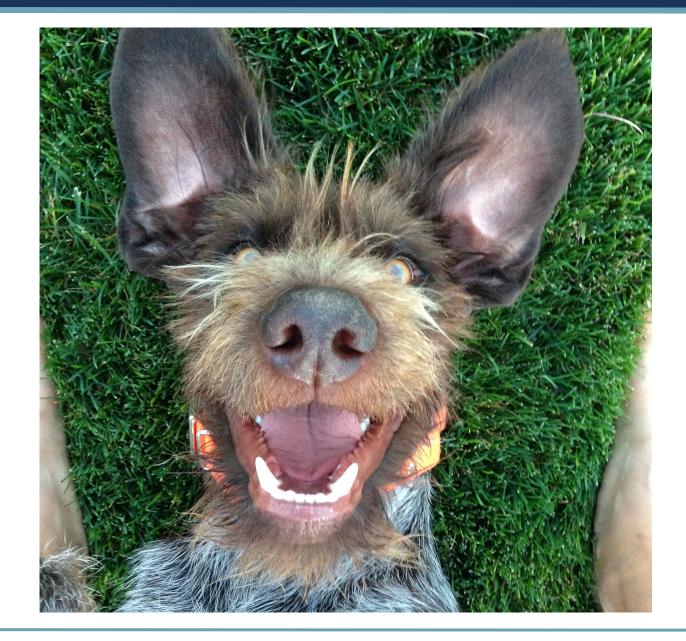
• Prevention!


- Active warming (convective heating)
 - Bair hugger
 - Hair dryer*
 - Heated water beds*
 - Heated tables*
- Other:
 - Fluid warmer
 - Socks/bubble wrap
 - Warmed fluid bags*

Hyperthermia

•At risk patients

- Overweight/obese
- Heavy/double-coated breeds
- Procedures without open cavity
 - \circ Ophthalmology
 - \circ Neuro
 - \circ Dentistry
- MRI
- Cats + opioids
- •Consider as differential when patient is panting, hypertensive and/or tachycardic



LWESTVET

Review

- Blood pressure
 - Hypotension
 - Hypertension
 - Bradycardia
 - Tachycardia
 - Hypoxemia
 - Hypoventilation
- Thermoregulation
 - Hypothermia
 - Hyperthermia

L.WESTVET

Thank you!

Questions?

morgan.oakleaf@westvet.net

L.WESTVET