Let's Get Tachy: The Diagnosis and Treatment of Arrhythmias

Alyssa Pinkos, DVM, Diplomate, ACVIM (Cardiology) <u>Alyssa.pinkos@medvet.com</u>

Objectives

- Identify common tachyarrhythmias on ECG
- Discuss predisposition & pathophysiology of arrhythmias
- Learn how to treat arrhythmias
 - Rate versus rhythm control

"It's got a nice beat and it's easy to dance to."

Supraventricular Tachycardias

- Narrow QRS tachycardia
 - "Normal appearance"
 - Utilize ventricular conduction system
- Physiologic response
 - Sinus tachycardia
- Pathologic
 - Atrial fibrillation
 - Atrial flutter
 - Atrial tachycardia
 - AV Nodal Dependent
 - Wolff Parkinson White
 - Junctional

Normal QRS Morphology

Electrical alternans is common with SVT

Sinus Tachycardia

- Often confused with pathologic supraventricular tachycardias
- Fast rate with normal appearing QRS complexes
 - Dogs < 200 BPM
 - Cats < 250 BPM
- P for every QRS and QRS for every P
 - P waves may be buried in preceding T wave
- Normal PR interval
- Exhibit gradual changes in rate
 - Never abrupt rate changes
- No therapy required

ECG diagnosis

What is this rhythm?

- A) Too fast to be a sinus tachycardia
- B) Sinus tachycardia
- C) I can't even find the p wave!
- D) Ventricular tachycardia
- E) Can I get more info?

Vagal Maneuvers

- Non-pharmacologic interventions that increase vagal stimulation to the heart
 - Slows (gradually) rate of SA nodal discharge
 - Slows AV nodal conduction
 - Little effect else where (atrial & ventricular myocardium)
- Methods
 - Carotid sinus massage
 - Pressure applied to angle of mandible
 - Breath hold
 - Diving Reflex
 - Ocular pressure

Vagal Maneuvers

Images courtesy of KE Schober

Why Vagal Maneuvers are Important

A) A sinus tachycardia again...duh!B) Is this a trick question?

What is the arrhythmia?

Vagal Maneuvers

What is the arrhythmia?

- A) Atrial fibrillation
- B) Atrial tachycardia
- C) Sinus tachycardia
- D) Can we talk about something besides arrhythmias?

Supraventricular Tachycardia

Abrupt breaks = pathologic

Precordial Thump

Pathophysiology

- Tachycardia
 - Decreases cardiac output
 - Decreases contractility
- Loss of atrial contraction
 - 20% decrease in cardiac output
 - Increase in atrial pressures
 - Increased risk of luminal thrombosis (cats)
- Sudden deterioration in clinical status
 - Perfusion abnormalities
 - CHF

Predisposing Factors

- Atrial enlargement
 - Larger atria have increased risk of development
 - Atrial chamber dilation in heart disease
 - Lone atrial fibrillation
- Atrial fibrosis
 - Promotes re-entry
 - Areas of conduction block
 - Slow conduction
 - Endothelial disruption
 - Jet lesions
 - Chamber dilation
- Electrolyte abnormalities
- Pericarditis

Clinical Signs

- Signs of CHF
 - Respiratory
 - Ascites
- Classic arrhythmia signs
 - Lethargy
 - Exercise intolerance
 - Syncope
 - Ptyalism
 - Agitation/anxiety

Physical Exam

- Arrhythmia
 - Extrasystole
 - Chaotic
 - Paroxysmal
 - Regular & sustained
- Femoral pulse
 - Variable pulse quality
 - Pulse deficits
 - Poor perfusion

Atrial Tachycardia

P wave rate unaffected, decreased ventricular rate

- Atrial origin
 - P waves usually buried in proceeding T wave
 - P waves of different morphology
 - Baseline between subsequent P waves
- QRS rhythm generally regular and rapid
- Vagal maneuver slows ventricular rate
 - Easier to see P waves
 - P waves occurring at initial QRS rate
 - P waves unaffected by vagal maneuver

Atrial Flutter

Atrial Fibrillation

- Supraventricular origin
 - Normal QRS complexes
- (+/-) tachycardia
- <u>Marked irregularity</u> between subsequent QRS complexes!!
- No P waves
- Baseline undulations
 - f waves
- Generally sustained

Atrial Fibrillation

- Most common type of SVT
 - Seen predominately with heart disease
 - DCM
 - Mitral valve disease
 - May occur in normal heart
 - Lone AF
 - Giant breeds of dogs, horses
 - May also be triggered by pericarditis

Atrial Fibrillation

Wolff-Parkinson White Syndrome

- SVT due to re-entry across an accessory pathway
- Accessory pathway
 - Aberrant myocardium that connects atria to ventricles
 - Impulse travel bidirectionally

Accessory Pathway

Congenital abnormality

Wolff-Parkinson White Syndrome

• What abnormality would indicate the presence of an accessory pathway?

- A) Prolonged P wave duration
- B) Abnormally short PR interval
- C) Lack of PR interval
- D) Second degree AV block

Wolff-Parkinson White Syndrome

- Ventricular pre-excitation
 - Abnormally short PR interval

SVT Guidelines for Therapy

- Sudden death unlikely
- Heart rates
 - Rates > 180 BPM for 3 weeks results in cardiomyopathy and heart failure
 - Refractory CHF
 - Average rate > 120 BPM associated with decreased survival times
- Hemodynamic significance
 - Most SVT's associated with underlying heart disease
 - Detriment to cardiac function
 - Likely associated clinical signs
 - Exercise intolerance
 - Syncope
 - Progressive CHF

SVT Therapy

- Rate control
 - Medical therapy aimed at blocking AV nodal conduction
 - Slowing the ventricular rate
 - Arrhythmia persists
 - Benefits
 - Easy to accomplish & maintain
 - Atrial fibrillation
 - Atrial flutter
 - Well tolerated medications
 - Inexpensive
 - Negatives
 - Loss of atrial contraction
 - Decreases cardiac output
 - Clot potential
 - Difficult
 - A tachycardia

Which anti-arrhythmic used to treat SVTs also decreases contractility?

- A) Atenolol
- B) Lidocaine
- C) Sotalol
- D) Digoxin
- E) Diltiazem
- F) More than one of these

Medical Treatment – Rate Control

- Digoxin
 - Dosing
 - <20 kgs: 0.03 mg/kg
 - >20 kgs: 0.22 x lean meters squared body weight
 - Toxicity
 - GI signs
- Class 2 antiarrhythmics
 - Atenolol (1 mg/kg PO BID)
 - Metoprolol
 - Propranolol
 - Esmolol
- Class 4 antiarrhythmics
 - Diltiazem (2-4 mg/kg PO BID*)
 - Extended release

Medical Treatment – Rhythm Control

- Restore sinus rhythm
 - Abolish arrhythmia
- Benefits
 - SA nodal control of heart rate
 - Restore atrial contraction
 - Improved cardiac output
 - Avoid the need of lifelong medication
- Negatives
 - Expensive
 - Redevelopment of arrhythmia
 - Heart disease
 - Chronicity
 - Electrical remodeling

Medical Therapy - Rhythm Control

- Diltiazem
 - AV Nodal dependent tachycardia
- Class 3 (K+ channel blocker)
 - Sotalol
 - Concurrent beta-blockade
 - Amiodarone
 - Ventricular and atrial efficacy
- Class 1C (Na+ channel)
 - Flecainide
 - Propafenone

Rhythm Control

Atrial fibrillation

Ablation

- Radiofrequency necrosis of arrhythmia site
 - Identification with catheter mapping
- Permanent cure
 - Wolff Parkinson White
 - Atrial tachycardia
 - Atrial flutter

Ventricular arrhythmias

What are ventricular arrhythmias?

• Abnormal, rapid, heart beats that originate in the bottom chamber of the heart

Ventricular arrhythmias TIP

Abnormal Electrical Conduction due to Ventricular Ectopic Foci

Remember that morphology of the ventricular complex is the between a supraventricular ectopic focus and a ventricular

• A supraventricular focus almost invariably results in a norm

• A ventricular focus almost invariably results in a wide, bizarre, complex associated with ventricular depolarization and repolarization.

What causes ventricular arrhythmias?

- A. Can be found in normal dogs
- B. Primary cardiac disease
- C. Drug effects
- D. Neoplasia
- E. Changes in autonomic tone

e. hypoxia, anemia, uremia, GDV, pancreatiis, electrolyte disturbances, metabolic, infectious conditions, trauma b. Dilated cardiomyopathy, degenerative valve disease, congenital disease

 c. digitalis, catecholamines, anesthetic agents (ketamine, barbiturates)

F. All of the above

Ventricular arrhythmias TIP

- Anything and everything may result in VPCs in dogs !
- In cats, VPCs are almost always (96%) secondary to underlying heart disease.

- Ventricular premature complexes (VPC) are named by the pattern they appear in.
- Most VPCs are single and by themselves.

Isolated VPC

Uniform v. multifocal VPCs

* mynymyt

Multifocal VPCs: from 2 or more foci within the ventricular wall

Ventricular bigeminy

Ventricular trigeminy

Ventricular couplet

Ventricular triplet

Ventricular tachycardia !!!

J Vet Cardiol. 2017 Oct;19(5):455-461. doi: 10.1016/j.jvc.2017.08.003. Epub 2017 Sep 19.

Sudden cardiac death in a dog during Holter recording-R on T phenomenon. $\underline{\text{Gunasekaran } T^1, \underline{\text{Sanders } RA^2}.}$

R-on-T phenomenon

Ventricular fibrillation

Severity of ventricular arrhythmias

Grade	Description
1	Single VPCs
2	Ventricular bigeminy, trigeminy
3	Couplets, triplets
4	R-on-T, multifocal ventricular arrhythmias, ventricular tachycardia

Accelerated idioventricular rhythm

- Cause: unknown
 - Seen with dogs that are acutely ill from an array of systemic disorders
- Control of the cardiac rhythm is intermittently exchanged between a ventricular focus and the SA node
- Ventricular beats occur in long paroxysms with a rate no more than ~10% higher than the normal rhythm – NO TACHYCARDIA!
 - Beats are wide, bizzare, biphasic, not premature
- Treatment: not required
 - Resolves spontaneously 2-3 days
 - Is not hemodynamically significant
 - Impossible to suppress

Accelerated idioventricular rhythm

Patient presentation

- Predisposed canine breeds: Boxer dogs, Doberman Pinschers
- Predisposed feline breeds: cats with hypertrophic cardiomyopathy
- History
 - Depends on severity of arrhythmia
 - Varies from normal at home to sudden death
 - Syncope
 - Weakness
 - Lethargy
 - Exercise intolerance
- Physical exam
 - Irregular rhythm
 - Tachycardia
 - Asynchronous pulses
 - Prolonged CRT

Diagnostic work up

- May or may not proceed treatment
- General practice work up should include:
 - <u>A thorough physical exam!</u>
 - CBC, Chemistry, UA, T4
 - ECG
 - Chest radiographs
- Cardiac work up may include:
 - <u>A thorough physical exam!</u>
 - Echocardiogram
 - ECG (6 or 10 lead)
 - Telemetry or Holter monitor
 - +/- Abdominal ultrasound

Severity of ventricular arrhythmias

Grade	Description		
1	Single VPCs	Investigate!	
2	Ventricular bigeminy, trigeminy		
3	Couplets, triplets	Controversial, in my	
4	R-on-T, multifocal ventricular arrhythmias, ventricular tachycardia	Treat!	

Justification to treat is usually to prevent progression to more serious arrhythmias such as ventricular tachycardia and ventricular fibrillation, which may result in sudden death.

Treatment

- Intravenous options
 - Lidocaine
 - Should stock in GP!
 - Procainamide
 - Magnesium sulfate
 - Nexterone (Amiodarone)

Lidocaine

- Mechanism of action: class Ib sodium channel blocker
- Dosage
 - Canine: 2 mg/kg IV slowly up to three times (6 mg/kg)
 - If effective start a CRI at 50 mcg/kg/min (25-75 mcg/kg/min)
 - Feline: 0.25 mg/kg IV slowly up to 2 mg/kg
- Side effects
 - Acutely: GI upset (vomiting) give slowly over 1 minute
 - If toxic dose reach: neurologic (seizures)
- Dosing trick (2% lidocaine or 20 mg/mL)
 - IF a patient weighs 33 kgs (and we are giving 2 mg/kg) they need 3.3 mls
 - IF a patient weighs 15 kgs (and we are giving 2 mg/kg) they need 1.5 mLs

What if IV medications don't work?

Electrical cardioversion

Oral options

- Class I antiarrhythmics
 - Mexiletine
- Class III antiarrhythmics
 - Sotalol
 - Amidoarone

Sotalol

- Dose (canine) 1-2 mg/kg PO BID, feline 1-2 mg/kg BID or 10 mg PO BID/cat
- Side effects
 - Negative inotropic and chronotropic effect
 - *BE CAUTIOUS IN PATIENTS WITH SYSTOLIC DYSFUNCTION OR HEART FAILURE
 - Proarrhythmic

Mexiletine

- Dose (canine) 5-7 mg/kg TID, feline ???
- Side effects
 - Anorexia, vomiting, tremors (neurologic signs), hepatic toxicity, urine dribbling

Amiodarone

- Dose (canine) 12-15 mg/kg SID x 14 days; then 5-7 mg/kg SID; feline ???
- Side effects
 - Increase in liver enzymes, thyroid dysfunction, GI signs, neutropenia, pro-arrhythmic

Remember...

When treating arrhythmias...

- Take a deep breath!
- Assess severity and risk factors
- Formulate a diagnostic and treatment plan
- Re-evaluate as needed

Questions?

