Neonatal & Pediatric Anesthesia

Dr. Natalie Chow DVM, Diplomate ACVAA

Introduction

- Neonatal and pediatric patients present a unique challenge under anesthesia
- Consider life stage and physical status of the patient when designing appropriate anesthetic protocol

Life Stages

Stage	Canine	Feline
Neonate	First 4-6 weeks	First 4-6 weeks
Pediatric	Neonate to 6 months*	Neonate to 6 months
Junior	Reproductive mature, still growing	Up until 2 years
Adult	Structurally mature, finish growing	3-6 years
Mature	From middle up to approximately last 25% of expected lifespan (around half life expectancy for breed)	7-10 years
Senior	From mature to life expectancy (around last 25% of expected lifespan)	11-14 years
Geriatric	At life expectancy and beyond	>15 years

Life Stages

Stage	Canine	Feline
Neonate	First 4-6 weeks	First 4-6 weeks
Pediatric	Neonate to 6 months*	Neonate to 6 months
Junior	Reproductive mature, still growing	Up until 2 years
Adult	Structurally mature, finish growing	3-6 years
Mature	From middle up to approximately last 25% of expected lifespan (around half life expectancy for breed)	7-10 years
Senior	From mature to life expectancy (around last 25% of expected lifespan)	11-14 years
Geriatric	At life expectancy and beyond	>15 years

OVERALL

- Hypoalbuminemia → increased fraction of active drug
- Increased body water content → altered volume of distribution
 - Normal adult: 60% total body water
 - Neonate and pediatric: 80% total body water
- Centralized circulating fluid volume → more susceptible to hypovolemia

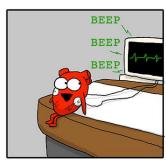
OVERALL

- Decreased body fat percentage → decreased drug redistribution
- Immature thermoregulation, high body surface to mass ratio
 → more susceptible to hypothermia
- Decreased production of erythropoietin → decreased hematocrit

NERVOUS SYSTEM

Increased permeability of blood brain barrier
 → increased percentage of drug dose to brain

Immature sympathetic nervous system


Use reduced drug levels to produce effective general and local anesthesia, and neuromuscular blockade

10/18/2021 ©2019 MedVet

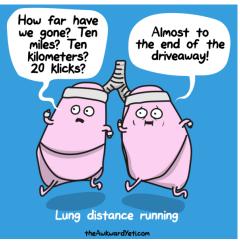
CARDIOVASCULAR SYSTEM

- Less contractile tissue per gram of myocardial tissue >
 decreased contractility
- Limited cardiac reserve
- Decreased ventricular compliance
- Poor vasomotor control
- Reduced baroreceptor reflexes
- Cardiac output is HR dependent!!!
- Potential for intracardiac shunt

theAwkwardYeti.com

Cardiovascular Physiology

CO = HR * SV


Neonates rely on high heart rate to maintain adequate cardiac output due to immature autonomic tone

https://animallova.com/

RESPIRATORY SYSTEM

- High metabolic rate → increased oxygen demand
- High minute ventilation
- Limited pulmonary reserve → increased risk of hypoxia
- Compliant rib cage + weaker intercostal muscles → less efficient ventilation and greater work of breathing → increased risk of hypoxia and respiratory fatigue

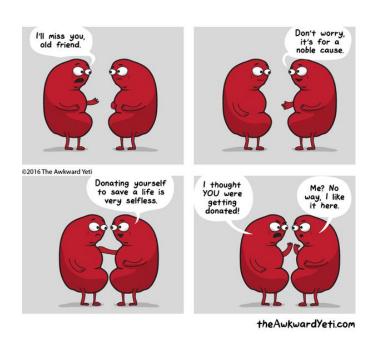
Neonatal and pediatric animals have <u>higher heart rates</u>, <u>higher respiratory rates</u>, and <u>lower blood pressure</u> than adults

Conscious neonatal dogs and cats:

- Heart rate: 200-220 beats per minute
- Respiratory rate: 15-40 breaths per minute
- Mean arterial blood pressure in 1 month old puppies: 50 mmHg

11

10/18/2021 ©2019 MedVet


HEPATIC SYSTEM

- Limited organ reserve
- Immature cytochrome P450 system → decreased drug metabolism → prolonged drug elimination
- Low glycogen levels → prone to hypoglycemia

RENAL SYSTEM

- Limited organ reserve
- Lower glomerular filtration rate → prolonged duration

What Does All Of This Mean?

- Exaggerated effect from using standard adult drug dosing

 use decreased drug dosage
- Prolonged duration of action = prolonged recovery
- Fluid requirements are greater in neonates
 - Caution with overhydration
- Support cardiovascular system with IV fluids and positive chronotropy
- Mask induction occurs extremely quickly
- Provide oxygen and ventilatory support

Anesthetic Considerations

- First case of the day
- Obtain accurate weight
- Fasting
 - If less than 8 weeks of age, do not fast for more than 1-2 hours
 - Consider monitoring blood glucose
- Careful auscultation of heart
- Maintain high heart rate

Anesthetic Considerations

- Use lower drug dosages
- Consider reversible drugs
- Anticipate difficult IV catheter placement and intubation
- Pre-oxygenate
- Prewarming
- Use 1 mL flushes

Analgesia

- Neonatal and pediatric humans experience pain
 - Pain experienced at extremely young age may lead to changes in nociceptive processes, which can result in chronic pain conditions later in life

Appropriate analgesia reduces dose of drugs needed to maintain general anesthesia

- Consider local or regional blockade
- NSAIDs?

Premedication

- Advantages:
 - Minimize stress in anxious patients
 - Decrease dose requirements for induction and maintenance
- Good to use:
 - Opioids
 - Benzodiazepines
- Caution use with:
 - Alpha₂ agonists
 - Acepromazine

https://commons.wikimedia.org http://acesurgical.com

Induction

- Good to use:
 - Propofol
 - Alfaxalone
- Caution use with:
 - Mask induction
 - Ketamine
- Smooth and quick induction and intubation
- Pre-oxygenate

https://pennvet.com/ https://jurox.com

Maintenance

- Good to use:
 - Inhalants
- Consider MAC sparing techniques
- Minimize anesthesia time
- Monitor blood glucose intra-op
- Maintain normothermia
- Provide adequate IV fluids
- Judicious use of anticholinergics to support heart rate

Airway Equipment

- Stylet
- Short laryngoscope blade
- Small endotracheal tubes
 - Consider uncuffed endotracheal tubes
- Non-rebreathing circuit if <3 kg
 - Alternatives: pediatric F circuit or pediatric Y rebreathing circuits
- Minimize mechanical dead space
- Consider IPPV (do not exceed 15-20 cmH2O)

Monitoring

- ECG
- Blood pressure
- SpO2
- RR
- ETCO2
 - Mainstream vs sidestream
- Temperature

Recovery

- Provide analgesia
- Maintain normothermia
- Maintain normal blood glucose concentrations
- Normal feeding should resume as soon as possible

Conclusion

- Neonate and pediatric patients have limited organ reserve
- Use decreased drug dosage
- Maintain high heart rate
- Monitor temperature and blood glucose concentrations
- Provide appropriate analgesia

