Anesthesia for Elective and Emergency C-Section

Sarah Shane, DVM, MS

Residency Trained in Anesthesia & Analgesia

Neonate Information

- Mortality rate
 - 15-25% (Concannon, 2002)
- Predisposing factors for mortality (Munnich, 2008)
 - Dystocia
 - Type and timing of intervention at birth
 - In-breeding
 - Malformations
 - Genetic defects
 - Diseases
 - Infectious disease

2

Factors Associated with Improved Survival (Moon, 2000)

- Elective vs. emergent surgery
- Non-brachycephalic breeds
- <4 puppies in the litter
- Spontaneous breathing of the neonate within 1 minute
- Avoidance of xylazine and/or ketamine in the anesthetic protocol
- Propofol/alfaxalone with isoflurane anesthesia

Overview of Maternal Physiology

- Patients are at a greater anesthetic risk than healthy nonparturient patients
- Cardiac reserve diminishes
- Pulmonary
 - Hypoventilation, hypoxemia, and hypercapnia
- Anesthetic requirement
 - Decreased
 - Increased risk of overdose and excessive depression
- Regurgitation

Maternal Physiology – Cardiovascular

- Blood volume increases by ~40%
 - Plasma volume increases more than red cell mass
- Cardiac output increases by 30-50%
 - Females have an increase in HR and SV
- Decreased cardiac reserve during pregnancy and parturition
- Patient positioning
 - Posterior vena cava and aorta can be compressed by an enlarged uterus

Maternal Physiology - Cardiovascular

Variable	Effect
Heart Rate	\uparrow
Cardiac Output	\uparrow
Blood Volume	\uparrow
Plasma Volume	\uparrow
PCV, Hemoglobin, Plasma Protein	\checkmark
Arterial Blood Pressure	-

Maternal Physiology - Pulmonary

- Decreased PaCO2
 - Respiratory alkalosis
- Hyperventilation
- Decreased functional residual capacity
 - Craniodorsal displacement of the diaphragm
- Hypoxemia
 - Due to the decreased FRC

7

Maternal Physiology – Pulmonary

Variable	Effect
Minute Volume	\uparrow
Oxygen Consumption	\uparrow
pHa & PaO2	-
PaCO2	\checkmark
Total Lung & Vital Capacity	_
Functional Residual Capacity	\checkmark

8

Maternal Physiology - Gastrointestinal

- Delayed gastric emptying
 - Displacement of the stomach
 - Decreased gastric motility
 - Increased serum progesterone
- Regurgitation and aspiration
 - Metoclopramide
 - H2 receptor antagonists
 - Plan for rapid airway management

Maternal Physiology – Gastrointestinal

Variable	Effect
Gastric Emptying Time & Intragastric Pressure	\uparrow
Gastric Motility & pH of Gastric Secretions	\downarrow
Gastric Chloride Ion Concentration	\uparrow

MEDVET

Maternal Physiology – Liver & Kidney

• Liver

- Pregnancy induces minor changes
- Decreased plasma cholinesterase concentration
- Kidney
 - Renal plasma flow and GFR are increased by ~60%
 - Decreased BUN and creatinine

11

Maternal Physiology – Liver & Kidney

Variable	Effect
Plasma Cholinesterase	\checkmark
Renal Plasma Flow & GFR	\uparrow
BUN & Creatinine	\checkmark
Sodium Ion & Water Balance	-

MEDVET

Maternal Physiology – Uterine Blood flow

- Blood flow is directionally proportional to systemic perfusion pressure
 - Inversely proportional to vascular resistance
 - Not auto-regulated
- Anesthesia can decrease uterine blood flow \rightarrow reduced fetal viability
- Placental hypotension
 - Hypovolemia
 - Anesthetic-induced cardiovascular depression
 - Sympathetic blockade

Pharmacologic Alterations

- Pregnancy affects uptake, distribution, and disposition of anesthetic agents
- Minimal alveolar concentration (MAC)
 - Reduced compared to non-pregnant females
- Placental diffusion
 - Low molecular weight (<500 Da)
 - Low degree of protein binding
 - High lipid solubility
 - Non-ionized at maternal blood pH

Pharmacologic Alterations

- Ion trapping
 - Fetal pH usually 0.1 units less than maternal
 - Lower fetal pH will increase the ionized drug concentration
 - Non-ionized (basic) drugs will cross the placenta
 - Once in the placenta the ionized form of the drug will be trapped in the acidic environment
- Redistribution
 - 85% of umbilical venous blood
 - Fetal circulation buffer drug concentration
- Metabolism
 - Longer drug half-life

MEDVET

Pharmacologic Alterations

- Protein Binding
- ↑ circulating progesterone levels
 - Progesterone has an effect on the GABAA receptors (agonist)
 - Decreased anesthetic requirement by 25-40%
 - Effect:
 - Sedation
 - Anxiolysis
 - Muscle relaxation

Pre-Anesthetic Considerations

- Hypocalcemia
 - Calcium involved in cardiac smooth muscle and skeletal muscle contraction
 - <1 mmol/L
 - 0.5-1.5 ml/kg over 15-20 minutes
- Regurgitation
 - Maropitant
 - Cuffed endotracheal tube
- Decreased FRC
 - Pre-oxygenate

Anticholinergics

- Atropine and glycopyrrolate
- Increases the gastric pH
 - Decreased severity of aspiration pneumonia
- Glycopyrrolate does not readily cross the placenta
- Neonates have an incomplete cardiac autonomic development
 - Anticholinergics unlikely to affect the fetus

Phenothiazine & Benzodiazepine

- Acepromazine
 - Can induce fetal and maternal depression
 - Requires hepatic metabolism (Pascoe, 2001)
 - Not associated with increased maternal or fetal mortality (Moon, 1998)
- Benzodiazepines
 - Can induce neonatal depression
 - Decreased elimination
 - Clinical signs: decreased vocalization, lethargy, hypotonus, apnea, hypothermia

MED

α-2 Adrenergic Agonist

- Xylazine
 - Rapidly crosses the placenta
 - Maternal and fetal respiratory and circulatory depression
 - Associated with higher mortality rates
- Dexmedetomidine
 - No current canine or feline studies on pregnancy or parturition

Opioids

- Rapidly cross the placenta
 - Can cause respiratory and neurobehavioral depression
- Reversal agents
 - Advantage of using a full mu opioid
 - Will cross the placenta
 - Can be given to the mother prior to delivery
 - Deprives the mother of analgesia
 - Naloxone
 - Very effective
 - Duration of action is shorter than most full mu opioids

Induction Agents

- Propofol
 - Produces rapid induction for intubation
 - Crosses the placenta but rapidly cleared from neonatal circulation
- Alfaxalone
 - Minimal cardiorespiratory effects (Muir, 2008)
 - Associated with increased APGAR scores (Doebeli, 2013)
- Etomidate
 - Rapid anesthesia
 - Minimal cardiovascular effects
 - Maintenance of fetal tissue perfusion
 - Repeated dosing can cause acute hemolysis

Dissociatives

- Rapid onset of action and short duration
 - Highly lipophilic
- Ketamine will cross the placenta
 - Enters fetal circulation
- Leads to respiratory depression, apnea, decreased vocalization and increased mortality at birth (Moon-Massat, 2002)(Luna, 2004)

23

Induction Agents

- Readily cross the placenta
 - Rapid fetal and maternal equilibration
- Ventilation is the primary route of elimination (Eger, 2005)
- Deep levels of anesthesia:
 - Maternal hypotension
 - Decreased uterine blood flow
 - Fetal acidosis

http://vetlandmedical.com/

Local Anesthetics

- Amide derivates (ie. lidocaine and bupivacaine)
 - Metabolized by hepatic microsomal enzymes
 - Can have increased concentrations within the fetus
- Epidural anesthesia
 - Local anesthetic accumulation rarely occurs
 - Sympathetic blockade
 - Maternal hypotension
 - Decreased uteroplacental perfusion
 - 1/3 to ½ of the original dose (Pascoe, 2001)

General Anesthetics

- Disadvantages of GA:
 - Greater neonatal depression
 - Inadequate anesthetic plane
- Advantages of GA:
 - Speed and ease of induction
 - Control of the maternal airway
 - Reliability
 - Immobile patients
 - Reproducibility
 - Control
 - Oxygenation
 - Cardiopulmonary function

MEDVET

General Anesthesia

- GA Goals (Raffe, 2015):
 - Induction must be smooth and rapid
 - Intubation should be quick followed by ventilator support
 - Drugs and technique selected to maintain fetal viability
- Perfusion
 - Maintain MAP $\geq 70 \text{ mmHg}$
- Ventilation
 - Hyperventilation
 - Decreased uterine artery blood flow → fetal hypoxia, hypercapnia and acidosis

Hypotension

- Primary Action:
 - Decrease inhalant percentage
 - Fluid bolus
 - Colloids are more effective than crystalloids (Cyna, 2006)
- Ephedrine or phenylephrine
 - Equally effective in human trials (Chooi, 2017)
 - Human APGAR scores remained >8
 - Possible tachycardia and hypertension with higher doses of ephedrine

Neonatal Resuscitation

- Delivery
 - Milk the umbilical vessels towards the fetus
 - Clamp umbilical vessels and sever from the placenta
- Management
 - Remove the amniotic fluid from the nose and mouth
 - Begin rubbing the new born within a towel → support the head and neck
 - Oxygen delivery ?
 - Heat
- GV 26 ?
 - Acupuncture site
 - Stimulates the sympathetic nervous system

MEDVET

Neonatal Resuscitation

- Doxapram
 - Respiratory stimulant
 - Not currently used in human neonates
- Naloxone
 - Commonly used opioid antagonist
 - Reverse the opioids administered during surgery
- Atropine
 - Ineffective <14 days old
- Dextrose
 - 0.1-0.5 ml sublingual administration

APGAR Scoring System

I	ndicator	0 Points	1 Point	2 Points
А	Activity (muscle tone)	Absent	Flexed limbs	Active
Р	Pulse	Absent	< 100 BPM	>100 BPM
G	Grimace (reflex irritability)	Floppy	Minimal response to stimulation	Prompt response to stimulation
А	Appearance (skin color)	Blue Pale	Pink body Blue extremeties	Pink
R	Respiration	Absent	Slow and irregular	Vigorous cry

31

Maternal Pain Management

- Opioids
 - Do not cause maternal depression
 - Butorphanol
 - Methadone
 - Hydromorphone
- NSAIDs
 - Do not cause maternal depression
 - Carprofen
- Inadequate pain management can decrease milk production
- 1-2% of the maternal dose (opioids, NSAIDs, and alpha-2 agonists) will transfer to the milk

