

standardizing digital representations of
value

Token
Taxonomy
Framework
Overview
TTF – November 2019

 1

Table of Contents

Token Taxonomy Framework (TTF) Overview ... 3

Token Classification .. 4

Common Terminology ... 5
Template Formula and Definition .. 6
The elements of a Formula (base types, behaviors, and property sets) will be described later. 6
Token Class vs. Instance ... 6
Taxonomy Artifacts, Categories, and Templates .. 7
Artifact References and Templates .. 8
Classification Hierarchy .. 8
Control Messages ... 9

Base Token Types .. 10
Fungible .. 10
Non-fungible .. 10
Representation Type .. 10
Hybrids ... 11

Properties ... 12

Behaviors .. 13
Common Behaviors .. 13
Special Behaviors and Interactions .. 15
Internal and External Behaviors ... 15

Behavior Groups ... 16

Template Formula ... 16

Template Definition .. 17

Token Specification ... 18

Branch Classification ... 19

Taxonomy Model and Artifacts ... 20

Behavior Artifact ... 22

Taxonomy Grammar ... 23

Hierarchy .. 25
Example Design .. 27

Taxonomy Hierarchy ... 28

Tooling and Taxonomy .. 29

Design Phases ... 32

 2

Logical Interaction Models .. 32

Taxonomy Workshops and Formulas ... 33

Benefits of the framework .. 34

TTF Extensions .. 35

Conclusion .. 35

 3

Token Taxonomy Framework (TTF) Overview
The Token Taxonomy Framework bridges the gap between blockchain developers, line of
business executives, and legal/regulators allowing them to work together to model existing
and define new business models and networks based on tokens. The blockchain space alone
makes it difficult to establish common ground, but when adding tokens to the mix they find
themselves speaking completely different languages.

The framework’s purpose IS to:

• Educate - take a step back and CLEARLY define a token in non-technical and cross
industry terms using real world, everyday analogies so ANYONE can understand them
via properties and behaviors that describe and define them.

• Define a common set of concepts and terms that can be used by business, technical, and
regulatory participants to speak the same language.

• Produce token definitions that have clear and understood requirements that are
implementation-neutral for developers to follow and standards organizations to
validate.

• Establish a base Token Classification Hierarchy (TCH) driven by metadata that is simple
to understand and navigate for anyone interested in learning and discovering tokens
and underlying implementations.

• Deliver tooling meta-data using the TTF syntax that enables the generation of visual
representations of classifications, and modelling tools to view and create token
definitions mapped to the taxonomy.

• Use terminology that is neutral to programming language and blockchain, distributed
ledger or other distributed medium where tokens reside.

• Encourage open and collaborative workshops to accelerate the creation of powerful
vertical industry applications and innovation for platforms, start-ups, and enterprises.

• Produce standard artifacts and control message descriptions mapped to the taxonomy
that are implementation-neutral and provide base components and controls that
consortia, startups, platforms or regulators can use to work together.

• Encourage differentiation and vertical specialization while maintaining an interoperable
base.

• Include a sandbox environment for legal and regulatory requirement discovery and
input.

Be used in taxonomy workshops for defining existing or new tokens which results in a
contribution back to the framework to organically grow and expand across industries for
maximum re-use.

4

It is NOT:

• Specific to the Ethereum family but applies to any shared medium – whether it be a
blockchain or database.

• A Legal or regulatory framework - but it does establish common ground.
• Complete or comprehensive. It is intended to be expanded over time.

This document does not provide a background on tokens and their function, but rather
introduces the taxonomy and classifications as a composition framework for creating or
documenting existing token definitions. However, it is worthwhile to establish foundational
definitions for two concepts: what a token is, and what is often called a wallet or an account.

A token is a digital representation of some shared value. The value can be intrinsically digital
with no external physical form or be a receipt or title for a material item or property. A purely
digital token represents value directly, where the other references that actual value, or at least
a claim to it. For example, a crypto currency like Bitcoin is intrinsically digital since it has no
referenced physical form, but 1 kg of tokenized gold would.

An account or wallet (which can aggregate several accounts) represents a repository of tokens a
ttributed to an owner. An owner is given an "address" which uniquely identifies the owner, and
the owner possesses the key to that address. A token's owner is a reference to an address and a
wallet is a reference to an address for an owner. The wallet can provide a view into token
balances in one place for the owner, much like a bank account or bank summary of accounts.

See Token Hall (https://medium.com/tokenhall) for a background for business and technical
audiences.

Token Classification
The TTF classifies tokens using five characteristics they possess, allowing tokens that share the
same characteristics to be classified together. These are foundational token concepts that can
be applied to most tokens.

• Token Type: Fungible or Non-Fungible. The difference between the two is clarified later
in this document.

• Token Unit: Fractional, Whole or Singleton indicates if a token can be subdivided into
smaller fractions, usually represented as decimals, or if there can be a quantity greater
than 1. For example, a $1 bill can sub-divided to 2 decimal places and can be broken into
four .25¢ coins (or several different variation of coins) and is thus Fractional. Whole
means no subdivision allowed - just whole numbers quantities - and a Singleton has a
quantity of 1 with no subdivision.

• Value Type: Intrinsic or Reference indicates if the token itself is a value, like a
cryptocurrency, or if it references a value elsewhere, like a property title.

5

• Representation Type: Common or Unique. Common tokens share a single set of
properties, are not distinct from one another, and balances are recorded in a central
place. These tokens are simply represented as a balance or quantity attributed to an
owner’s address where all the balances are recorded on the same balance sheet. A
unique token has its own identity, can have unique properties, and be individually
traced. Common tokens are like money in a bank account and Unique tokens are like
money in your pocket.

• Template Type: Single or Hybrid, covered later, but is an indication of any parent/child
relationships or dependencies between tokens.

Classification is useful when visualizing different token types and learning about the basic
characteristics a token would need to have when you are using the TTF to define it.

Common Terminology
The TTF is a composition framework that breaks tokens down into basic reusable parts -
base token types, properties and behaviors - which are then placed into a category by type and
can support grouping. Each decomposed part is documented in a taxonomy artifact. Composing
these token parts together generates another taxonomy artifact defining a complete token by
referencing its component artifacts.

The taxonomy uses these terms for all tokens:

• Token Template - describes a token based on its type and what capabilities or
restrictions a token created from the template would have (i.e. Fractional Fungible
Template). A template has two parts:

o Template Formula - a set of reusable taxonomy components that, when
combined, is used to classify and describe how to work with a token.

o Template Definition - is derived from a formula, filling in the details to define a
token that can be used to deploy as a class
(i.e. Cryptocurrency Token Definition).

• Token Class - a deployed token from a Template (i.e. Bitcoin created from the cryptocur
rency template).

• Token Instance - a single token in a Token Class (i.e. satoshi balance in your
cryptocurrency wallet).

6

Figure 1 - Common Terms

Template Formula and Definition
Templates are like recipes that have a list of ingredients, details about the measurements of
each ingredient, how to mix them together, and finally how long to cook.

Templates have two parts, the first of which is the template Formula. It is like the list of
ingredients for a recipe. The second part is the Definition that contains the instructions and
details for defining a token, like the step by step instructions of a recipe.

Figure 2 - Template Formula

The elements of a Formula (base types, behaviors, and property sets) will be described later.

Token Class vs. Instance
A token class is a deployed template using a specific implementation or platform, e.g. Ethereum
blockchain. Depending on the target platform the implementation may be a complete set of
source code or a software package from a 3rd party.

7

Figure 3 - Template Context

A token instance is an owned token of a token class. Platform implementations of a token class
vary in technologies like programming languages and network foundations. Instances of a token
that you may own, or have in your digital wallet, represent your account balance of that token
class.

Taxonomy Artifacts, Categories, and Templates
The taxonomy is comprised of artifacts that are categorized into five basic types:

• Base Types: the foundation of any token is its base token type.
• Behaviors: capabilities or restrictions that can apply to a token.
• Behavior Groups: a bundle of behaviors that are frequently used together.
• Property Sets: a defined property or set of properties that - when applied to a token

– can support a value that can be queried.
• Token Templates: a composition of artifacts brought together to create a classification

and detailed specification.

The TTF is comprised of artifacts, which are just sets of files that share a common set of
metadata and consistency for defining items and compositions in the framework. For example,
suppose we were baking a cake using a recipe. An artifact is like an ingredient that can be used
in the recipe, e.g. milk, sugar, flour. The recipe pulls together the ingredients by specifying how
much of each ingredient to add, when and how long to cook. In this analogy, ingredients are
Artifacts and a recipe is a Token Template.

8

Artifact References and Templates
An artifact is a verbose description of the TTF component it represents with place holders for
settings or properties that the artifact can have when used. Every artifact has an artifact
symbol, which contains a unique identifier as well as visual and tooling symbols used in the
taxonomy. The artifact’s unique identifier allows for each artifact to be independently
versioned. An artifact reference can be a lightweight link to the artifact’s unique identifier or a
complete reference that also provides settings and values for its place holder properties.

To use an artifact, you simply reference the artifact and apply overlay values for the artifacts in
a template definition. Artifacts are reusable definitions, like when a recipe calls for milk, you
only need one definition of what milk is so you can just reference it and indicate how much milk
the recipe calls for. When composing a Token Template, you are creating references to all the
artifacts, i.e. ingredients, in the formula and providing details about each of the artifacts in the
definition.

When creating a Template Formula, it uses a symbol or lightweight reference, which is only
a pointer to the artifact with no other values or settings.

A Template Definition, which is created from a formula, uses a full artifact reference, which
contains values and settings specific for the artifact in the context of the token definition.

Figure 4 - Artifact Reference

Using references in this way prevents data duplication in the TTF, and specification changes
flow through existing Template artifacts without updating it in each one.

Classification Hierarchy
The TTF creates a hierarchy or tree of Templates where each Template Formula is a branch. A
branch can have other branches and leaves, or nodes that are represented by the Template
Definition. The hierarchical tree is constructed starting with foundational classifications, like
Fungible or Non-Fungible as roots of the tree, and branches are represented by Templates.

9

Branches are related by their classifications and formula to create the hierarchical relationship
structure. A leaf or node is a Template Definition based on a formula. Formulas can have
multiple definitions where the definitions have different settings and property values for the
artifacts in the formula.

Figure 5 - Classification Hierarchy

References are followed through the hierarchy and back to the Artifacts to validate and
determine what instance values can be set in the instance.

Control Messages
Behavior and Property Sets contain Control message descriptions that are used to invoke a
behavior or get/set the value of a property. These control messages are described in the artifact
for the behavior or property set. Control messages are named descriptively and come in
request and response pairs.

Control messages contain optional named parameters of a specific type for requests and
responses.

Figure 6 - Control Messages

10

These messages are generic for the behavior and not specific to any blockchain implementation
or programming language. Control messages are described as invocations within an artifact and
optionally in a separate file using Protocol Buffer syntax that can be used for TTF extensions like
code generation or testing.

Base Token Types
The taxonomy is anchored by a single root token that is used to define properties shared by the
two implementable or base token types. Properties like a common name, a symbol or unique
identifier a quantity and an owner. When you create a token, you are initially creating a token
or asset class of a specific type of token that will represent instances of the token.

The root token also contains a single behavior called constructable. This behavior provides
tokens with the ability to be a template, or to create a clone of itself. Constructible simply
means that every token template will have a constructor control message to define initialization
values when a clone of a template is created and is defined in the token template artifact.

Using the taxonomy, a token template is defined that is to be used to create a token or asset
class. The class is essentially a mold for creating instances (printing or minting) of that token
type. An instance of a token class is the smallest unit that can be owned in that class.

The taxonomy uses symbols to represent token bases and possible behaviors that are used to
create a token definition as a formula. The symbols and token formulas can be used to create
hierarchical relationships useful for visualizations, and to aid in learning and design. The two
base types can also be combined in different ways to create hybrid token definitions.

Fungible
Physical cash or a cryptocurrency is a good example of a fungible token. These tokens have
interchangeable value with one another, where any quantity of them has the same value as
another equal quantity if they are in the same class or series.

A fungible token is identified by 𝜏Ϝ symbol.

Non-fungible
A non-fungible token is unique. Hence a non-fungible token is not interchangeable with other
tokens of the same type as they typically have different values. A property title is a good
example of a non-fungible token where the title to a broken-down shack is not of the same
value as the title to a mansion.

A fungible token is identified by 𝜏# symbol.

Representation Type
Tokens can have either a common representation, sometimes called account or balance tokens,
or unique representation, or UTXO (unspent transaction output). This distinction might seem
subtle but is important when considering how tokens can be traced and if they can have
isolated and unique properties.

11

Common tokens share a single set of properties, are not distinct from one another, and
balances are recorded in a central place. These tokens are simply represented as a balance
or quantity attributed to an owner address where all the balances are recorded on the same
balance sheet. This balance sheet is distributed, not centralized, and rather simplified. Common
tokens have the advantage of easily sharing a value like a "SKU" where the change in the value
is immediately reflected for all tokens. Common tokens cannot be individually traced, only their
balances between accounts can. Bank accounts are an example of a common fungible token.

Unique tokens have their own identities and can be individually traced. Each unique token can
carry unique properties that cannot be changed in one place and cascade to all and their
balances must be summed.

Bank notes and paper bills are interchangeable but have unique properties like a serial number
and are therefore examples of unique fungible tokens.

A unique token is identified by a “ ‘ ” following the type symbol, i.e. 𝜏Ϝ′.

Hybrids
Hybrid tokens combine a parent token and one or more child token(s) to model different use
cases. Hybrids can get nested where a child token is also a parent for more complex scenarios.
Here are some examples.

Shared Non-fungible Parent with Fungible classes
These tokens have a non-fungible parent or base token and can have multiple classes of child
tokens. An example of this hybrid is a rock concert, where the parent token represents the
specific date or showing of the concert with a fungible child for general admission and a non-
fungible child for "reserved" section seating. Represented as 𝜏#(𝜏Ϝ, 𝜏#).
The owner of an instance of this token will possess the child token that pulls along the parent
and is presented at the concert gate for admission. If the parent token date matches the
current date the token is valid for admission. If the child token that is owned is in the reserved
seating section, the owner has the right to sit in the seat indicated by the token.

Fungible Parent class owns or has many non-fungible Children
A token can be the parent of any number of tokens to represent the compound value of the
child tokens. For example, a 𝜏Ϝ(𝜏#) is a fungible token parent that is the owner of one or
more non-fungible tokens. An owner of an instance of this parent would own a percentage of
the pool of non-fungible child tokens. A mortgage-backed security is a good example of this
type of hybrid token.

12

Properties
Properties of a token are used to define the information or data a token contains about itself
and to record its activities. Some properties are set when the token class is created from a
template, like its name and owner, while others are set and updated over a token’s lifetime.
How a property value is set determines what type of property it is.

• Behavioral Property: If a property's value must be set or read by a behavior, it is called a
behavioral property.

• Non-Behavioral Property (Property Set):
If a property can be set independently from a behavior it is a non-behavioral property or
property set.

The difference in these two types is often sematic but is key to understanding
a property's overall scope.

• A Behavioral property value is not determined directly but controlled by logic contained
in a behavior. Setting its value is the result of a calculation or logic based on an action in
its controlling behavior. Visibility of its value may or may not be obtained directly from
an explicit control message. A behavioral property is defined in a behavior artifact.

• A behavioral property may not have meaning or even be visible to observers outside of
a token behavior.

• A non-behavioral property has its own "getter and setter" defined in a Property Set
artifact. Which means it will have controls for getting and setting its value directly.

Non-behavioral properties, like a serial number, reference properties or generic tags, can be
added to a token without effecting its behavior.

For example, you can create a property title token that uses a non-fungible token template and
adds non-behavioral properties like a map number and plot location to create a new template.
You can repeat this process for an art token that uses the same non-fungible token template
and adds different non-behavioral properties needed to represent it. Even though these two
tokens started with a common template, they expose different non-behavioral properties.

Non-behavioral properties are defined in a property set artifact. A property set artifact can
contain the definition of a single field property like a SKU or multiple field properties like a
Mailing Address. A property set can represent a complex property like a Customer that contains
fields like First Name, Last Name, Address (a nested property), etc.

Property sets have a 𝜙 prefix and a capital letter or acronym that is unique for the taxonomy.
For example, 𝜙𝑆𝐾𝑈 could be used for the SKU property set. Adding a non-behavioral property
set to a token template requires it to be specifically added to its formula.

13

Some token properties from its base may have different values or meaning depending on the
context when evaluating them. For example, the Owner property in the context of the token
class refers to the creator or owner of the token class, which may come with permissions to
mint or issue new tokens of the class but does not have permissions on any specific instance of
the token class. In the context of a token instance, Owner is the owner of that token instance
and will have all the permissions that come with owning the token itself, like spending or
transferring ownership of the token.

Behaviors
Behaviors are capabilities and restrictions containing logic and properties that can be common
across token types. In the TTF, behaviors use the first letter of the behavior as its
representation. Letter collisions can be avoided by adding additional letters from a single word
name or the letter of a second word.

Behaviors usually have existing “non-blockchain” implementations which are well understood
in business contexts.

Common Behaviors
This is a list of some common behaviors and is not intended to be comprehensive, as the TTF is
a working standard where artifacts are improved and added on a regular basis. This process is
covered in more detail later in this document.

14

Figure 7 - Common Behaviors

Some of these behaviors are valid for either base type, while others only apply to one. For
example, ~t (non-transferable) would not make sense for a fungible token, and d (sub-
dividable) does not apply to a token with the s (singleton) behavior.

A behavior that is not valid for a specific type or conflicts with another behavior will include the
symbol reference in its incompatible list.

Where hybrid tokens are being defined, behaviors can be defined that are common to all token
s, or at different granularities. For example, the following definition is for a fungible parent
token that does allow new tokens to be minted, and child non-fungible tokens that cannot
be minted. However, both classes of token are transferrable:

[𝜏Ϝ{𝑚}(𝜏#{𝑚}){𝑡}]
For boolean behaviors like Sub-dividable d or Whole ~d, the absence of ~d would imply d
but should be explicitly included for clarity.

15

Some behaviors, like Transferable t are implicit for certain token bases. A fungible token, for
example, implicitly is Transferable so the taxonomy does not require it to be included for
tooling or the template but again should be explicitly included for clarity: 𝜏Ϝ = 𝜏Ϝ{𝑡}.

Special Behaviors and Interactions
Some behaviors, when applied, will affect other behaviors within the token definition. These
behaviors influence other behaviors in some way when they are combined in the same
template. Examples of this are the behaviors Delegable and Roles.

Delegable, g, is the ability to delegate a behavior to another party to perform on your behalf as
the token owner. Delegable is implied (the default), so an absence of ~g means the token class
and any behaviors that are influenced by its behavior will be delegable.

Behaviors like Transfer and Burn can be defined as Delegable, and when they are applied to a
formula that is Delegable, these behaviors will enable delegated invocations like TransferFrom
and BurnFrom that allows an account the owner has approved to invoke these on their behalf.

Roles, r, allows for a role or membership check before invoking an influenced behavior in order
to determine if invocation is allowed by the invoker.

Potential influences are defined in an artifact and details of regarding influence is detailed in a
template definition when the artifacts are brought into context with each other.

Behaviors can be incompatible with each other and cause validation errors. A behavior and its
opposite `~` are obviously incompatible. A behavior will indicate what behaviors it will be
incompatible with, for example if s (singleton) and m (mintable) or d (sub-dividable) is applied
in the same token, validation will fail as a singleton can only have a quantity of 1 whole token.

Some behaviors will require setup at token class creation or construction. A behavior that
requires setup should have a Constructor control message that indicates how it should be setup
at construction.

Internal and External Behaviors
Behaviors can be internal or external depending on what the behavior effects. An internal
behavior is enabling or restricting properties on the token itself, whereas an external behavior
is enabling or restricting the invocation of the behavior from an external actor. For example, the
behavior sub-dividable means that the decimals property on the base token is > 0 and non-
transferable means that the Owner property is not modifiable from the initial owner that was
set when the token instance was created.

16

Examples of an external behavior would be something like Financeable or Encumberable. These
behaviors would enable an external actor to invoke the behavior and the token would contain
the correct behavioral properties to record the outcome when invoked. For example, if a Loan
contract were to invoke FinanceRequest on a token instance, the loan contract could expect a
FinanceResponse back from the token as an indication of the success or failure of this behavior.

The distinction between internal and external behaviors can seem like nuance at first but is an
effective way to distinguish pure token behaviors from contract behaviors and document the
business logic the behavior represents. External behaviors are primarily contract behaviors that
need a supporting token interface to allow the two to be linked together to fulfill the end-to-
end functionality.

So, external behaviors will have two parts, contract and token, that are required when
describing them. Artifact authors may choose to document the corresponding contract portion
of the behavior in an additional artifact file.

Behavior Groups
Behaviors can also be grouped together to describe a common set of capabilities that are used
together frequently. Supply Control is a group made up of Mintable, Burnable, and roles for
adding and removing token supply and by allowing certain accounts in a role to be able to mint
new tokens within the class.

For example, an oil token may allow oil producers to mint new tokens as they introduce a barrel
of oil into the supply chain. These tokens are transferred to a refiner that will burn the token
when it has been refined.

Behavior groups are represented in the taxonomy by a capital letter or acronym, SC, from their
full name and reference the symbols for the behaviors they include.

SC = {m, b, r}

This artifact references include settings and property values for behaviors in the same context.

Template Formula
Template Formulas list all a token's components together. The framework performs an initial
validation of the artifacts in context with each other enforcing grammar and rules regarding
incompatibilities, dependencies and influences. Formulas start with a base token type, then
collections of behaviors, behavior groups, and property sets.

17

Figure 8 - Template Formulas

The example above shows a reference to the artifact for the 𝜙𝑆𝐾𝑈property.

Template Definition
Once you have created or identified an existing formula, you can use the TTF Service to create a
Template Definition from it. The definition incorporates the artifacts identified in the formula as
references, where the artifact being used is identified and the settings and property
values for the artifact in context are established. The definition has a reference to its formula
and the unique identifier given to the definition becomes the id for the Token Template and
Token Specification.

18

Figure 9 – Template Definition

The definition is where the final settings and property values are established for generating a
token specification. Contextual documentation and valuable business rules should be explained
in this artifact for the specification’s implementors and documentation. As the TTF becomes
more and more populated, new token definitions will simply be composite definitions reusing
artifacts with different settings and property values providing valuable business documentation
for its potential users.

Token Specification
The TTF can generate a Token Specification document when provided the Template Definition
Id. The generation of the specification pulls the complete artifact for base, behaviors, property
sets, and children into a specification and then merges the definition reference values for each
artifact. This generates a complete and quite verbose token specification that can be used as
requirements for developers, documentation and training.

19

Figure 10 - Token Specification

Branch Classification
A Base token type provides the foundation of a template to which additional artifacts are added
to in order to complete a template definition. The base token for a template is either Single or
Hybrid, with a token type of either Fungible or Non-Fungible, and finally its Unit is classified as
fractional, whole or singleton. Classification is primarily used for creating visualization
hierarchies to compare templates and understand relationships between them.

By default, Token Templates are organized in a simple hierarchy by Fungible, Non-Fungible, and
Hybrid. Further classification hierarchies can be dynamically generated using the five
classification values and the template formula.

20

Figure 11 - Classification Hierarchy

Taxonomy Model and Artifacts
Artifacts are primarily defined using a platform neutral model that provides type safety and
strong schema validation as well as independence from the client display or interface. The
Taxonomy Object Model (TOM) is an object model that is very much like an ORM (object to
relational model) that is native to most platforms and can serialize to binary or JSON formats.

Figure 12 - Taxonomy Object Model (TOM)

21

Above, is a representation of the taxonomy model, where each property of the taxonomy is a
list of available behaviors, behavior groups, property sets, formulas, definitions, and templates
that are placed in a hierarchical structure.

Below is an example of a template formula in the model showing the collection of its artifacts:

Figure 13 - TOM Example

Written in protocol buffers, the schema supports a data structure to hold artifact definitions th
at anyone can understand. Storing the artifact definition in an object model allows for artifacts
to be added or updated using any client interface or imported from files like Word or Google
Docs.

The model serializes/saves to the artifact folder in JSON format, so changes are tracked by
GitHub.

Figure 14- Artifact Properties

An artifact is more than just a single JSON model file; additional files for the artifact's
supporting documentation can be added that include protocol buffer control definitions,
sequence diagrams, PowerPoint slides, paired contract behavior documentation, etc. All an
artifacts documents are contained within a single folder in the file structure based on the
artifact type and version.

22

Figure 15 - Artifact Model

Artifacts are versioned as well, using a version folder, unique id and an optional version number
defined in the Artifact Symbol. The most recent version, regardless of its number is stored in a
folder called `latest` within the artifact folder name. Previous versions will be in version number
folders, where each artifact file for that version is maintained.

An artifact is referenced by its Artifact Symbol and any reference that does not specify an Id will
default to latest version.

Behavior Artifact
A behavior’s properties and control messages are packaged together in a behavior artifact.

Figure 16 - Behavior

A behavior may also include things like a sequence diagram to clearly define how a behavior is
invoked and how the behavior responds using the defined control message definitions.

23

Figure 16 - Sequence Diagram

Taxonomy Grammar
Grammar defines how to construct a formula of artifacts that is recorded as metadata in the
artifact for the respective token and used for verification and classification.

The grammar has a visual representation and one for tooling that does not include characters
for italics, Greek, super or subscript, etc. Using the grammar, a formula serves as a shorthand
definition for the token specification.

The formula uses brackets, braces and parentheses to combine the token parts and starts with
the base token type:

24

Token Base Type Visual Format Tooling Format
Fungible 𝜏Ϝ tF
Non-fungible 𝜏# tN

Unique Fungible 𝜏Ϝ′ tF'

Unique Non-fungible 𝜏#′ tN'

Hybrid Non-fungible w/ class of fungibles 𝜏#(𝜏Ϝ) tN(tF)
Fungible with a class of non-fungibles 𝜏Ϝ(𝜏#) tF(tN)

Fungible w/ class of non-fungibles and fungibles 𝜏Ϝ(𝜏#, 𝜏Ϝ) tF(tN,tF)

Non-fungible w/ class of fungibles and non-
fungibles

𝜏#(𝜏Ϝ, 𝜏#) tN(tF,tN)

Non-fungible w/ a class of fungibles and non-
fungibles, w/ each child having formulas

𝜏#([𝜏Ϝ{ }], [𝜏#{ }]) `tN([tF{}],[tN{}])`

• Behaviors are a single *italic* lower-case letter or letters that are unique.
• Behavior Group is an upper-case letter or letters that is unique

with behavior formula encased in {,} Supply Control: SC{m,b,r}, when used in a template
formula only the SC is used.

• Property Sets are prefixed with 𝜙 followed by an upper-case letter or acronym that is
unique to the taxonomy. 𝜙 is the visual format and ph is the tooling. To add a
property set toa template, enclose the token definition within [] adding the property set
after the behaviors with a + for each set needed so all the token's behaviors and
properties are contained within the surrounding brackets [].

• For example, a Token Branch can be a formula with just the base and behaviors and can
then have a Node that had the Branch formula surround by brackets [] and adds using +
the unique property sets, added within the brackets. i.e. [𝜏#([𝜏Ϝ{ }], [𝜏#{ }]) +
𝜙𝑆𝐾𝑈]

• Hybrid tokens, represented as children of a base parent are added after the base's []
and contained with in parenthesis (,). These child tokens are also contained within
brackets resulting in a formula grouping like: `[]([],[])`

• For hybrid tokens, you can apply behaviors to the entire hybrid definition by ending the
formula with a list of behaviors in {,}.

• Hybrid children with formulas are grouped within the formula's []: i.e.
𝜏#{𝑠, ~𝑡}(𝜏Ϝ{~𝑑, 𝑆𝐶})

A token formula uses the taxonomy symbols, which are references to artifacts, can be used to
represent a token that is useful for tooling allowing grouping and structures to be represented.
Some examples:

25

Figure 17 - Formula Examples

Now we can begin naming and describing tokens starting with the base type followed by the
behaviors or group of behaviors. A Token Definition represents our complete token and is
basically documenting everything a developer would need to know in order to develop an
implementation. Token definitions are given a meaningful name starting with an uppercase
letter.

Figure 18 - Definitions from Formulas

A template formula can have multiple definitions, for example a Fractional Fungible template
may define 2 decimal places for subdivision, while another allows for 16.

Hierarchy
Using the taxonomy, we can now start to construct basic hierarchical relationships creating a
token tree structure. Using TOM, tools can create visualizations for learning and comparing
tokens and their implementations. The tools become a great design services to define new
tokens by composing them from the base token types and adding behavior artifacts and groups.

The root of the tree is a common base token or 𝜏 which has an owner Id, name, quantity and
decimals property.

26

Figure 19 - Base Token

There three root branches used to classify templates:

• Fungible - common and unique
• Non-Fungible - common and unique
• Hybrid - 𝜏#(𝜏Ϝ), etc.

o Has Fungible and Non-Fungible branches for hybrids by parent.

Each root branch has a branch by Token Unit:

• Fractional Fungible (sub-dividable) 𝜏Ϝ{𝑑}
• Fractional Non-Fungible (sub-dividable) 𝜏8{𝑑}
• Whole Fungible (non-sub-dividable) 𝜏Ϝ{~𝑑}
• Whole Non-Fungible (non-sub-dividable) 𝜏#{~𝑑}
• Singleton 𝜏#{𝑠} (s implies ~d)

Figure 10 - Hierarchy

Hybrid tokens can reference another branch within the tree to prevent duplication.

27

Branches on the tree begin to get wider as behavior artifacts and behavior groups are added.
The tree visualization makes a good eye chart, but the token design surface becomes a
powerful business tool.

Example Design
As an example, let’s see what a singleton token could look like with a design tool.

Figure 11 - Sample Design Tool

When designing a token using the taxonomy, you will pick from one of these six lower branches
of fungible (fractional or whole) and non-fungible (fractional, whole or singleton) or hybrid as a
starting design surface.

Behavior artifacts and properties appear in lists like menus you can drag and drop inside your
design surface to define a new token. The taxonomy will block behaviors or behavior
combinations that conflict or are not valid for the base token type you have selected.

You can then apply the values for settings and properties to provide the detail to the underlying
artifacts in the definition. The result is a defined token that has a baseline specification to serve
as a starting point for implementing a platform specific token.

28

Figure 12 - Definition Design

Taxonomy Hierarchy
If you find a token template that is already defined, but your token has specific non-behavioral
properties like a 𝜙𝑆𝐾𝑈or 𝜙𝐶𝑈𝑆𝐼𝑃 property you can create a new token template, use the
existing template formula and add your properties to create a new template and branch in the
taxonomy.

In this case the generic taxonomy definition: 𝜏Ϝ{~𝑑, 𝑆𝐶} or tF{~d,SC} is named Whole Fungible
Token with Supply Control and represents a branch off the Whole Fungible branch in the
hierarchy.

Adding the SKU property set will be a branch off this branch named `Inventory Item Template`.
Your new token template reuses the formula above, adding the `SKU` property set to the
formula i.e. [𝜏Ϝ{~𝑑, 𝑆𝐶} + 𝜙𝑆𝐾𝑈].

29

Figure 13 - Branch Hierarchy

Tooling and Taxonomy
Using the TTF to define a token, you ultimately end up with a template formula and definition
that defines the specification. The TTF TOM can be navigated using the symbol tooling formats,
to programmatically navigate artifact metadata to generate all sorts of useful outputs from
documentation and control messages to visualizations, user interfaces, reports, and even
implementation code.

The GitHub artifact hierarchical file structure has artifact folder and file names that are the
same as the name of the type described in it. The parts in the file system are organized by type
folders: base, behaviors, behavior-groups and token-templates.

• base - contains definitions for the base &tau and has a folder for fungible and non-
fungible containing 𝜏Ϝand 𝜏#. Note the metadata in the artifacts uses the tooling format
of tF and tN to prevent tools from escaping special characters like < and / used in the
visual format.

• behaviors - folder for each behavior and version.
• behavior-groups - folder for each behavior group and version.
• Property sets - folder for each non-behavioral property set and version.
• token-templates - token templates contributed by workshops to the framework.

- formulas - complete token formula that is the foundation for a template
definition.

- definitions - complete token definition that is based off a formula.
- specifications - the generated token specification from the template definition.

30

Figure 14 - File Hierarchy

Tools use the Taxonomy Service to retrieve the TOM to update and add artifacts and generate
other types assets.

Other GitHub repositories can link to the taxonomy repository to link implementation specific
code to specific taxonomy symbols like a behavior or token specification. This code is then
mapped as a platform specific implementation of that artifact.

For example, in the Ethereum community OpenZeppelin there is a popular open source
repository for Solidity source code that developers use and is mapped to several artifacts in the
TTF.

31

Figure 15 - Code Maps

Using a taxonomy code map, tools can be built to generate code for specific platforms by
combining the code from the formula into new composite source code to speed development.

Similarly, an implementation map can be used to provide navigation from a specific token
formula like 𝜏Ϝ{~𝑑, 𝑆𝐶}	or tF{~d,SC} to map to a vendor or open source complete
implementation as open source or a packaged solution.

Figure 16 - Implementation Maps

32

Design Phases
Using the taxonomy when creating or defining an existing token should improve token
implementations. Designs and artifacts are contributed back into the taxonomy making it more
useful and providing consistency across implementations. The high-level design phases are:

• Workshop - this is the initial phase when starting from scratch defining the token for
your business needs. During this process you reuse and create any new taxonomy
artifacts and when complete have a resulting token taxonomy definition and draft
specification.

• Reuse - Once you have your taxonomy definition, you may be able to find an existing
definition in the taxonomy with the same formula. This doesn't mean that the token
you defined is exactly the same as the existing definition, but it’s a good place to start.

• Implementation - You can use maps in the taxonomy to locate platform specific code or
complete token solutions from open source, vendors to get create or find an
implementation suitable for your deployment platform target. i.e. Ethereum,
Hyperledger Fabric, Corda or Digital Asset.

Logical Interaction Models
Putting all these taxonomy concepts together allows for interaction models to be modelled so a
nyone can understand how a completed token works.

• Creating a new Token (class) from a Template - sending a template its constructor messa
ge, which will return the new token class's unique identifier.

Figure 17 - Create Interaction

• Interacting with a Token (class) - send a behavior control command message to the
token using its unique identifier.

33

Figure 18 - Interact with Class

For each complete token definition these interactions can be defined as an artifact file in the
artifact folder.

Taxonomy Workshops and Formulas
The taxonomy can be used in a workshop with stakeholders that want to define an existing or
figure out a new token. This workshop starts by defining a high-level business and functional
purpose for the token and then begins to decompose the functionality into TTF artifacts.

In the workshop, the group will select a base token type and select from the existing behaviors
and properties in the taxonomy like choosing from A la Carte menu at a restaurant. If no
suitable artifact can be found, the participants should create a new one. Which means they will
create a new taxonomy artifact using the TTF.

The end result of the workshop is to have a complete template for the token that can expressed
using grammar in a formula and paired with a detailed definition.

When a workshop is completed, the artifacts should be recorded, using the TTF tools and
submitted to be merged as part of the framework and be available for reuse by other
workshops.

34

Figure 19 - Workshop Process

Benefits of the framework
TTF artifacts are not fixed, nor do they represent complete implementations with specific
values until they are applied to a template definition. They do include a common set of
behavior and property set invocations as control messages. This is similar to Ethereum's ERC-20
interface standard that allows for working with tokens in a generic way and integrate them into
common experiences.

Having a common interaction model via generic behavior and property set invocations allows
for challenging interoperability issues to be approach from a higher level and being designing
systems that allow for contracts to interact with tokens across blockchain implementations
using standard control messages defined in a common way.

35

Figure 20 - Contracting Tokens

TTF Extensions
Where does the TTF end and an implementation begin? Artifact Maps described above provide
the extensible links to source, implementation and reference materials like legal or regulatory
guidance. Using an artifact's `Map` you can reference:

• Complete source code for a platform and language (i.e. HLF/Chaincode/Go - > url)
• A finished solution or implementation (i.e. a link to a website or marketplace offering)
• Regulatory guidance (i.e. link to a regulatory agency report)

This can be done for an individual behavior to have a mapping to a code snippet or to a
Template Definition for complete source code or reference a finished solution.

Figure 21 - TTF Extensions

Conclusion
The Token Taxonomy Framework is just the beginning of a cross platform and cross vertical
industry collaborative effort to foster an increased understanding and use of tokens as well as
drive standards for interoperability.

36

The Token Taxonomy Initiative (TTI) encourages and will help kick start special interest groups
for Financial Services, Insurance Healthcare, Energy, Real Estate, Telecommunications and
Supply Chain to start defining the tokens most relevant and important for their industry and
encourage cross industry integration.

