
Monitoring Airflow 
with Prometheus, 
StatsD and Grafana


Everyday Data Engineering: 

Everyday Data Engineering: Databand’s series –  
A guide on common data engineering activities, 
written for data engineers by data engineers.



Monitoring Airflow can 
be painful.

In order to debug health problems or find the root cause 

of failures, a data engineer needs to hop between the 

Apache Airflow UI, DAG logs, various monitoring tools, and 

Python code. 



It doesn’t have to be this way.   

You can use operational dashboards to get a bird’s-eye 

view of our system, clusters, and overall health.



In this guide, we’ll be exploring the best practices for going 

the open-source route to building an operational 

dashboard. 

This guide’s goal is to easily answer questions 
like: 
 

Is our cluster alive?  


How many DAGs do we have in a bag?  


Which operators succeeded and which failed 
lately?  


How many tasks are running right now?  


How long did it take for the DAG to complete? 



Pro�

Con�

� Lower initial cost�
� Your only cost for implementation is labor�

� Community support�
� Contribution from the global community.  


� Higher long-term cost�
� Maintenance and troubleshooting can become 

difficult as your needs become more complex�
� Usability can be difficult�

� As your data team grows, ease of use, scalability, and 
governance can become hard to manage.



Open-source

We’ll need to configure a data observability dashboard. There are two routes you can take when looking for a data observability 

solution: an open-source solution or a managed one. There are advantages and disadvantages to both, namely:

Building an open-source  
Airflow monitoring solution

1
Pro�

Con�

� Greater usability�
� Better UI and automation can make your team more 

efficient�
� Better support�

� Dedicated support standing by. 


� Higher initial costs�
� The pricing model might not make sense for some 

organizations�
� Less flexibility�

� Unless the managed service is built on open-source 
code, functionality can be limited.

Managed Service2



Building an 
open-source Airflow 
monitoring solution

For this guide, we will focus on monitoring and 
visualizing Airflow cluster metrics. These types 
of metrics are great indicators of cluster and 
infrastructure health and should be constantly 
monitored.
 

Airflow exposes metrics such as DAG bag size, number of currently 
running tasks, and task duration time, every moment the cluster is 
running. You can find a list of all the different metrics exposed, along 
with descriptions, in the official Airflow documentation.



By leveraging this trio, you can find out whenever the scheduler is 
running, how many DAGs are in a bag now, or most other critical 
problems in the cluster’s health. 





StatsD1
We’ll start with StatsD. StatsD is a widely used service for collecting and 
aggregating metrics from various sources. Airflow has built-in support 
for sending metrics into the StatsD server. Once configured, Airflow will 
then push metrics to the StatsD server and we will be able to visualize 
them.

Prometheus2
Prometheus is a popular solution for storing metrics and alerting. Because 
it is typically used to collect metrics from other sources, like RDBMSes and 
webservers, we will use Prometheus as the main storage for our metrics. 
Because Airflow doesn’t have an integration with Prometheus, we’ll use 
Prometheus StatsD Exporter to collect metrics and transform them into a 
Prometheus-readable format. StatsD Exporter acts as a regular StatsD 
server, and Airflow won’t notice any difference between them.

Grafana3
Grafana is our preferred metrics visualization tool. It has native 
Prometheus support and we will use it to set up our Airflow 
Cluster Monitoring Dashboard.



Let’s start!

Airflow Cluster reports metrics to StatsD Exporter which performs transformations and aggregations and passes 

them to Prometheus. Grafana then queries Prompetheus and displays everything in a gorgeous dashboard. In 

order for this to happen, we will need to set up all of those pieces.



First, we will configure Airflow, then StatsD Exporter and then Grafana. 

The basic architecture of our monitoring solution will look like this:  

Airflow Cluster StatsD Exporter GrafanaPrometheus



Prometheus, StatsD Exporter and 
metrics mapping

This guide assumes you’re already familiar with Prometheus. 
If you aren’t yet, it has great documentation and is really easy 
to get started with as Prometheus doesn’t require special 
configuration. StasD Exporter will be used to receive metrics 
and provide them to Prometheus. Usually it doesn’t require 
much configuration, but because of the way Airflow sends 
metrics, we will need to re-map them. 



By default, Airflow exposes a lot of metrics, which labels are 
composed from DAG names. For convenience, these metrics 
should be properly mapped. By utilizing mapping we can 
then build Grafana dashboards with per-airflow instances 
and per-dag views.

Let’s take dag.<dag_id>.<task_id>.duration metric for example.    

The raw metric name sent by Airflow will look like 
airflow_dag_sample_dag_dummy_task_duration. For each Airflow 
instance you have and for each DAG you have, it will report 
duration for each Task producing combinatorics explosion of the 
metrics. For simple DAGs, it’s not an issue. But when tasks add up, 
things start being more complicated and you wouldn’t want to 
bother with Grafana configuration.



To solve this, StatsD Exporter provides a built-in relabeling 
configuration. There is great documentation and examples of 
these on the StatsD Exporter page. 



Now let’s apply this to our DAG duration metric.



Prometheus, StatsD Exporter and 
metrics mapping

The relabel config will look like this:
 We are extracting three labels from this 
metric�

�� Airflow instance ID (which should be different across the 

instances�

�� DAG I�

�� Task ID 


Prometheus will then take these labels and we’ll be able to 

configure dashboards with instance/DAG/task selectors and 

provide observability on different detalization levels.



We will repeat re-labeling config for each metric exposed 

by Airflow. See “Source Code” section at the end of the 

article for a complete example.



Airflow configuration


“A constant challenge is ensuring my 
data engineers have a good contract 
with data scientists and know how 
to take products from them and 
smoothly integrate them into the 
system. Even with pods, it’s not 
always smooth.”





-Data Engineering Team Lead

“

A couple of options should be added to airflow.cfg. Please note that Airflow will fail to start 
if StatsD server won’t be available at the start-up time! Make sure you have an up and 
running StatsD Exporter instance. 



The very basic config section in airflow.cfg will look like this:

For the more details, please refer to Airflow Metrics documentation.



Configuring Grafana Dashboards

Now, when we have all our metrics properly 

mapped, we can proceed to creating the 

dashboards. We will have two dashboards—one 

for cluster overview and another for DAG metrics.



For the first dashboard we will have 
the Airflow instance selector:



Configuring Grafana Dashboards

You can see here all vital metrics: 
like scheduler heartbeat, 
dagbag size, queued/running 
tasks count, currently running 
DAGs aggregated by tasks etc:



Configuring Grafana Dashboards

For the second dashboard we 
will have the DAG selector:



You can see DAG-related metrics: 

success DAG run duration, failed 

DAG run duration, DAG run 

dependency check time and DAG 

run schedule delay.



Conclusion
Airflow provides a decent out-of-the-box solution for monitoring DAGs, but it lacks accessibility and 
comprehensiveness. In this tutorial we have configured Airflow, StatsD Exporter and Grafana to get nice and 
useful dashboards. Dashboards like these can save a lot of time when troubleshooting cluster health issues like 
executors being down or DAG parsing being stuck because it has some heavyweight DB query. For more 
robust and convenient monitoring, alerts should also be configured, but this is out of the scope of the current 
article.



Stay tuned for more guides!




Happy engineering! 

Source Code


Complete source code including StatsD mapping config, two Grafana 

dashboards—one for Cluster overview and another for DAG stats, can be found in 

our GitHub project: https://github.com/databand-ai/airflow-dashboards/

https://github.com/databand-ai/airflow-dashboards/


Learn more about Databand.ai

Data engineers are the backbone of modern data teams. But for the average data engineer, 

it’s a challenge to make sure jobs are running successfully, data is meeting quality standards, 

and business stakeholders are satisfied. For companies who depend on accurate, on-time 

data flows, that’s a huge problem. We built Databand to help data engineers scale their 

infrastructure alongside their organization while maintaining data health standards.

Better data quality starts at ingestion

Make big data observability manageable.

w w w . d a t a b a n d . a i

https://databand.ai

