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Abstract. Many real-world time-series analysis problems are charac-
terised by scarce data. Solutions typically rely on hand-crafted features
extracted from the time or frequency domain allied with classification or
regression engines which condition on this (often low-dimensional) fea-
ture vector. The huge advances enjoyed by many application domains in
recent years have been fuelled by the use of deep learning architectures
trained on large data sets. This paper presents an application of deep
learning for acoustic event detection in a challenging, data-scarce, real-
world problem. Our candidate challenge is to accurately detect the pres-
ence of a mosquito from its acoustic signature. We develop convolutional
neural networks (CNNs) operating on wavelet transformations of audio
recordings. Furthermore, we interrogate the network’s predictive power
by visualising statistics of network-excitatory samples. These visualisa-
tions offer a deep insight into the relative informativeness of components
in the detection problem. We include comparisons with conventional clas-
sifiers, conditioned on both hand-tuned and generic features, to stress
the strength of automatic deep feature learning. Detection is achieved
with performance metrics significantly surpassing those of existing al-
gorithmic methods, as well as marginally exceeding those attained by
individual human experts. The data and software related to this paper
are available at http://humbug.ac.uk/kiskin2017/.

Keywords: Convolutional neural networks, Spectrograms, Short-time
Fourier transform, Wavelets, Acoustic Signal Processing

1 Introduction

Mosquitoes are responsible for hundreds of thousands of deaths every year due
to their capacity to vector lethal parasites and viruses, which cause diseases such
as malaria, lymphatic filariasis, zika, dengue and yellow fever [35,34]. Their abil-
ity to transmit diseases has been widely known for over a hundred years, and
several practices have been put in place to mitigate their impact on human life.
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Examples of these include insecticide-treated mosquito nets [19,4] and sterile
insect techniques [3]. However, further progress in the battle against mosquito-
vectored disease requires a more accurate identification of species and their pre-
cise location – not all mosquitoes are vectors of disease, and some non-vectors
are morphologically identical to highly effective vector species. Current surveys
rely either on human-landing catches or on less effective light traps. In part
this is due to the lack of cheap, yet accurate, surveillance sensors that can aid
mosquito detection. Our work uses the acoustic signature of mosquito flight as
the trigger for detection. Acoustic monitoring of mosquitoes proves compelling,
as the insects produce a sound both as a by-product of their flight and as a
means for communication and mating. Detecting and recognising this sound is
an effective method to locate the presence of mosquitoes and even offers the
potential to categorise by species. Nonetheless, automated mosquito detection
presents a fundamental signal processing challenge, namely the detection of a
weak signal embedded in noise. Current detection mechanisms rely heavily on
domain knowledge, such as the likely fundamental frequency and harmonics, and
extensive hand-crafting of features – often similar to traditional speech represen-
tation. With impressive performance gains achieved by a paradigm shift to deep
learning in many application fields, including bioacoustics [16], an opportunity
emerges to leverage these advances to tackle this problem.

Deep learning approaches, however, tend to be effective only once a criti-
cal number of training samples has been reached [6]. Consequently, data-scarce
problems are not well suited to this paradigm. As with many other domains,
the task of data labelling is expensive in both time requirement for hand la-
belling and associated ambiguity – namely that multiple human experts will not
be perfectly concordant in their labels. Furthermore, recordings of free-flying
mosquitoes in realistic environments are scarce [23] and hardly ever labelled.

This paper presents a novel approach for classifying mosquito presence using
scarce training data. Our approach is based on a convolutional neural network
classifier conditioned on wavelet representations of the raw data. The network ar-
chitecture and associated hyperparameters are strongly influenced by constraints
in dataset size. To assess our performance, we compare our methods with well-
established classifiers, as well as with simple artificial neural networks, trained
on both hand-crafted features and the short-time Fourier transform. We show
that our classifications are made more accurately and confidently, resulting in a
precision-recall curve area of 0.909, compared to 0.831 and 0.875 for the highest
scoring traditional classifier and dense-layer neural network respectively. This
performance is achieved on a classification task where only 70 % of labels are in
full agreement amongst four domain experts. We achieve results matching, and
even surpassing, human expert level accuracy. The performance of our approach
allows realistic field deployments to be made as a smartphone app or on bespoke
embedded systems.

This paper is structured as follows. Section 2 addresses related work, explain-
ing the motivation and benefits of our approach. Section 3 details the method
we adopt. Section 4 describes the experimental setup, in particular emphasis-
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ing data-driven architectural design decisions. Section 5 highlights the value of
the method. We visualise and interpret the predictions made by our algorithm
on unseen data in Section 5.1 to help reveal informative features learned from
the representations and verify the method. Finally, we suggest further work and
conclude in Section 6.

2 Related Work

The use of artificial neural networks in acoustic detection and classification of
species dates back to at least the beginning of the century, with the first ap-
proaches addressing the identification of bat echolocation calls [25]. Both man-
ual and algorithmic techniques have subsequently been used to identify insects
[7,36], elephants [8], delphinids [24], and other animals. The benefits of leveraging
the sound animals produce – both actively as communication mechanisms and
passively as a results of their movement – is clear: animals themselves use sound
to identify prey, predators, and mates. Sound can therefore be used to locate in-
dividuals for biodiversity monitoring, pest control, identification of endangered
species and more.

This section will therefore review the use of machine learning approaches in
bioacoustics, in particular with respect to insect recognition. We describe the
traditional feature and classification approaches to acoustic signal detection. In
contrast, we also present the benefit of feature extraction methods inherent to
current deep learning approaches. Finally, we narrow our focus down to the often
overlooked wavelet transform, which offers significant performance gains in our
pipeline.

2.1 Insect Detection

Real-time mosquito detection provides a method to combat the transmission of
lethal diseases, mainly malaria, yellow fever and dengue fever. Unlike Orthoptera
(crickets and grasshoppers) and Hempitera (e.g. cicadas), which produce strong
locating and mating calls, mosquitoes (Diptera, Culicidae) are much quieter.
The noise they emit is produced by their wingbeat, and is affected by a range
of different variables, mainly species, gender, age, temperature and humidity. In
the wild, wingbeat sounds are often overwhelmed by ambient noise. For these
reasons, laboratory recordings of mosquitoes are regularly taken on tethered
mosquitoes in quiet or even soundproof chambers, and therefore do not represent
realistic conditions.

Even in this data-scarce scenario, the employment of artificial neural net-
works has been proven successful for a number of years. In [7] a neural net-
work classifier was used to discriminate four species of grasshopper recorded
in northern England, with accuracy surpassing 70 %. Other classification meth-
ods include Gaussian mixture models [29,26] and hidden Markov models [20,36],
applied to a variety of different features extracted from recordings of singing
insects.
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Chen et al. [6] attribute the stagnation of automated insect detection accu-
racy to the mere use of acoustic devices, which are allegedly not capable of pro-
ducing a signal sufficiently clean to be classified correctly. As a consequence, they
replace microphones with pseudo-acoustic optical sensors, recording mosquito
wingbeat through a laser beam hitting a phototransistor array – a practice al-
ready proposed by Moore et al. [22]. This technique however relies on the ability
to lure a mosquito through the laser beam.

Independently of the technique used to record a mosquito wingbeat fre-
quency, the need arises to be able to identify the insect’s flight in a noisy record-
ing. The following section reviews recent achievements in the wider context of
acoustic signal classification.

2.2 Feature Representation and Learning

The process of automatically detecting an acoustic signal in noise typically con-
sists of an initial preprocessing stage, which involves cleaning and denoising the
signal itself, followed by a feature extraction process, in which the signal is trans-
formed into a format suitable for a classifier, followed by the final classification
stage. Historically, audio feature extraction in signal processing employed domain
knowledge and intricate understanding of digital signal theory [15], leading to
hand-crafted feature representations.

Many of these representations often recur in the literature. A powerful,
though often overlooked, technique is the wavelet transform, which has the
ability to represent multiple time-frequency resolutions [2, Ch. 9]. An instan-
tiation with a fixed time-frequency resolution thereof is the Fourier transform.
The Fourier transform can be temporally windowed with a smoothing window
function to create a Short-time Fourier transform (STFT). Mel-frequency cep-
stral coefficients (MFCCs) create lower-dimensional representations by taking
the STFT, applying a non-linear transform (the logarithm), pooling, and a final
affine transform. A further example is presented by Linear Prediction Cepstral
Coefficients (LPCCs), which pre-emphasise low-frequency resolution, and there-
after undergo linear predictive and cepstral analysis [1].

Detection methods have fed generic STFT representations to standard clas-
sifiers [27], but more frequently complex features and feature combinations are
used, applying dimensionality reduction to combat the curse of dimensionality
[18]. Complex features (e.g. MFCCs and LPCCs) were originally developed for
specific applications, such as speech recognition, but have since been used in
several audio domains [21].

On the contrary, the deep learning approach usually consists of applying a
simple, general transform to the input data, and allowing the network to both
learn features and perform classification. This enables the models to learn salient,
hierarchical features from raw data. The automated deep learning approach has
recently featured prominently in the machine learning literature, showing im-
pressive results in a variety of application domains, such as computer vision [17]
and speech recognition [18]. However, deep learning models such as convolutional
and recurrent neural networks are known to have a large number of parameters
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and hence typically require large data and hardware resources. Despite their suc-
cess, these techniques have only recently received more attention in time-series
signal processing.

A prominent example of this shift in methodology is the BirdCLEF bird
recognition challenge. The challenge consists of the classification of bird songs
and calls into up to 1500 bird species from tens of thousands of crowd-sourced
recordings. The introduction of deep learning has brought drastic improvements
in mean average precision (MAP) scores. The best MAP score of 2014 was 0.45
[11], which was improved to 0.69 the following year when deep learning was
introduced, outperforming the closest scoring hand-crafted method that scored
0.58 [16]. The impressive performance gain came from the utilisation of well-
established convolutional neural network practice from image recognition. By
transforming the signals into STFT spectrogram format, the input is repre-
sented by 2D matrices, which are used as training data. Alongside this example,
the most widely used base method to transform the input signals is the STFT
[30,14,28].

However, to the best of our knowledge, the more flexible wavelet transform is
hardly ever used as the representation domain for a convolutional neural network.
As a result, in the following section we present our methodology, which lever-
ages the benefits of the wavelet transform demonstrated in the signal processing
literature, as well as the ability to form hierarchical feature representations for
deep learning.

3 Method

We present a novel wavelet-transform-based convolutional neural network archi-
tecture for the detection of mosquitoes’ flying tone in a noisy audio recording.
We explain the wavelet transform in the context of the algorithm, thereafter de-
scribing the neural network configurations and a range of traditional classifiers
against which we assess performance. The key steps of the feature extraction
and classification pipeline are given in Algorithm 1.

3.1 The Wavelet Transform

As an initial step, we extract the training data into a format suitable for the
classifier. We choose to use the continuous wavelet transform (CWT) due to
its successful application in time-frequency analysis [9] (Step 2 of Algorithm 1).
Given the direct relationship between the wavelet scale and centre frequency, we
use the bump wavelet [33], expressed in the Fourier domain as:

Ψ(sω) = exp

(
1− 1

1− (sω − µ)2/σ2

)
I[(µ− σ)/s, (µ+ σ)/s], (1)

where I[·] is the indicator function and s is the wavelet scale. High values of µ, as
well as small values of σ, result in a wavelet with superior frequency localisation
but poorer time localisation.
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Algorithm 1 Detection Pipeline

1: Load N labelled microphone recordings x1(t), x2(t), . . . , xN (t).
2: Take transform with h1 features such that we form a feature tensor Xtrain and

corresponding label vector ytrain:

Xtrain ∈ RNS×h1×w1 ,ytrain ∈ RNS×2,

where Ns is the number of training samples formed by splitting the transformed
recordings into 2D ‘images’ with dimensions h1 × w1.

3: Train classifier on Xtrain,ytrain.
4: For test data, Xtest, neural network outputs a prediction yi,pred for each class Ci:
{C0 = non-mosquito, C1 = mosquito}, where

0 ≤ yi,pred(x) ≤ 1, such that

n∑
i=1

yi,pred(x) = 1.

3.2 Neural Network Configurations

A convolutional layer Hconv : Rh1×w1×c → Rh2×w2×Nk with input tensor X ∈
Rh1×w1×c and output tensor Y ∈ Rh2×w2×Nk is given by the sequential ap-
plication of Nk learnable convolutional kernels Wp ∈ Rk×k, p < Nk to the
input tensor. Given our single-channel (c = 1) input representation of the signal
X ∈ Rh1×w1×1 and a single kernel Wp, their 2D convolution Yk is given by [12,
Ch. 9]:

Yk(i, j) = X ∗Wp =
∑
i′

∑
j′

X(i− i′, j − j′)Wp(i′, j′). (2)

The Nk individual outputs are then passed through a non-linear function φ and
stacked as a tensor Y. Conventional choices for the activation φ include the
sigmoid function, the hyperbolic tangent and the rectified linear unit (ReLU).

A fully connected layer HFC : Rm → Rn with input x ∈ Rm and output
y ∈ Rn is given by y = HFC(x) = φ(Wx + b), where {W,b} are the learnable
parameters of the network and φ is the activation function of layer, often chosen
to be non-linear.

The data size constraint results in an architecture choice (Figure 1) of few
layers and free parameters. To prevent overfitting, our network comprises an
input layer connected sequentially to a single convolutional layer and a fully
connected layer, which is connected to the two output classes with dropout [32]
with p = 0.5. Rectified Linear Units (ReLU) activations are employed based
on their desirable training convergence properties [17]. Finally, potential candi-
date hyperparameters are cross-validated to determine an appropriate model, as
detailed in Section 4.2.

Using conventional multi-layer perceptrons (MLPs) one may simply collapse
the matrix X into a single column vector x. Unlike their convolutional coun-
terparts, MLPs are not explicitly asked to seek relationships among adjacent
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Fig. 1: The CNN pipeline. 1.5 s wavelet spectrogram of mosquito recording is
partitioned into images with c = 1 channels, of dimensions h1×w1. This serves as
input to a convolutional network with Nk filters with kernel Wp ∈ Rk×k. Feature
maps are formed with dimensions reduced to h2×w2 following convolution. These
maps are fully connected to Nd units in the dense layer, fully connected to 2
units in the output layer.

neurons. Whereas this may provide the model with more flexibility to find rela-
tionships between seemingly distant nodes, convolutional layers formally make
the model acknowledge that units are correlated in space. Without this assump-
tion, MLPs will look for sets of weights in a space in which this constraint
has not been made explicit. Our MLP architecture, chosen for comparison with
the CNN, is illustrated in Figure 2. The network omits the convolutional layer,
taking the form of an input layer followed by two fully connected layers, with
dropout with p = 0.5 on the connections to the output nodes.

3.3 Traditional Classifier Baseline

As a baseline, we compare the neural network models with more traditional clas-
sifiers that require explicit feature design. We choose three candidate classifiers
widely used in machine learning with audio: random forests (RFs), naive Bayes’
(NBs), and support vector machines using a radial basis function kernel (RBF-
SVMs). Their popularity stems from ease of implementation, reasonably quick
training, and competitive performance [31], especially in data-scarce problems.

We have selected ten features: mel-frequency cepstrum slices, STFT spectro-
gram slices, mel-frequency cepstrum coefficients, entropy, energy entropy, spec-
tral entropy, flux, roll-off, spread, centroid, and the zero crossing rate (for a de-
tailed explanation of these features, see for example the open-source audio signal
analysis toolkit by [10]). To select features optimally, we have applied both re-
cursive feature elimination (RFE) and principal component analysis (PCA), and
also cross-validated each feature individually. By reducing redundant descriptors
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Fig. 2: MLP architecture. For clarity the diagram displays connections for a few
units. Each layer is fully connected with ReLU activations. Input dimensions
D = h1 × w1. Number of hidden units in the first and second layers labelled L
and M respectively.

we can improve classification performance in terms of both speed and predictive
ability, confirmed by the cross-validation results in Section 4.2.

4 Experimental Details

4.1 Data Annotation

The data used here were recorded in January 2016 within culture cages con-
taining both male and female Culex quinquefasciatus [5]. The females were not
blood-fed and both sexes were maintained on a diet of 10 % w/v sucrose solution.
Figure 3 shows a frequency domain excerpt of a particularly faint recording in
the windowed frequency domains. For comparison we also illustrate the wavelet
scalogram taken with the same number of scales as frequency bins, h1, in the
STFT. We plot the logarithm of the absolute value of the derived coefficients
against the spectral frequency of each feature representation.

The signal is sampled at Fs = 8 kHz, which limits the highest theoretically
resolvable frequency to 4 kHz due to the Nyquist limit. Figure 3 (lower) shows
the classifications within yi = {0, 1}: absence, presence of mosquito, as labelled
by four individual human experts. Of these, one particularly accurate label set is
taken as a gold-standard reference to both train the algorithms and benchmark
with the remaining experts. The resulting label rate is given as Fl = 10 Hz. The
labels are up-sampled to match the spectral feature frequency, Fspec, which is
calculated as Fspec = Fs/h1, provided the overlap between windowed Fourier
transforms in samples is half the number of Fourier coefficients.

4.2 Parameter Cross-Validation

In this section we report the design and parameter considerations that we used
cross-validation to estimate. The available 57 recordings were split into 37 train-
ing and 20 test signals, creating approximately 6,000 to 60,000 training samples,
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Fig. 3: STFT (top) and wavelet (middle) representations of signal with h1 =
256 frequency bins and wavelet scales respectively. Corresponding varying class
labels (bottom) as supplied by human experts. The wavelet representation shows
greater contrast in horizontal constant frequency bands that correspond to the
mosquito tone.

for window widths w1 = 10 and w1 = 1 samples, respectively. Both neural net-
works were trained with a batch size of 256 for 20 epochs, according to validation
accuracy in conjunction with early stopping criteria.

We start with the CNN and note that the characteristic length scale of the
signal determines the choice of slice width. For musical extracts, or bird songs,
it is crucial to capture temporal structure. This favours taking longer sections,
allowing an appropriate convolutional receptive field in the time domain (along
the x-axis). A mosquito tone is relatively consistent in frequency over time, so
shorter slices are likely to provide a larger training set without loss of information
per section. We thus restrict ourselves to dividing the training data into 320 ms
fixed width samples (w1 = 10). When choosing the filter widths to trial, we
note that spectrogram samples are correlated in local regions and will contain
harmonics that are non-local. The locality is confined to narrow frequency bands,
as well as through time (along the y and x-axes respectively). Taking this into
account, we arrive at the cross-validation grid and results of Table 1.

For the MLP, we choose to cross-validate the narrowest training sample width
w1 = 1, and the CNN architecture sample width w1 = 10 forming a column
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Table 1: Cross-validation results. Optimal hyperparameters given in bold.

Classifier Features Cross-validation grid

CNN STFT k ∈ {2,3, 4, 5}, Nk ∈ {8, 16,32}, Nd ∈ {16, 64,128, 256}
CNN Wavelet k ∈ {2, 3, 4,5}, Nk ∈ {8, 16,32}, Nd ∈ {16, 64,128, 256}
MLP STFT w1 ∈ {1,10}, L ∈ {8, 256, 1028,2056},M ∈ {64, 512, 1024}
MLP Wavelet w1 ∈ {1,10}, L ∈ {8,256, 1028, 2056},M ∈ {64, 512,1024}
NB, RF, SVM F10 ∈ R304 PCA ∈ RN , N ∈ 0.8n × 304, n ∈ {0, 1, . . . , 12},

RFE ∈ RM ,M ∈ 304− 8m,m ∈ {0, 1, . . . ,27, . . . 35}.

vector xtrain ∈ Rh1w1×1 for each training sample. We then estimate the optimal
number of hidden units as given in Table 1.

The traditional classifiers are cross-validated with PCA and RFE dimension
reduction as given by n,m in Table 1. The best performing feature set for all
traditional classifiers is the set extracted by cross-validated recursive feature
elimination as in [13], outperforming all PCA reductions for every classifier-
feature pair. The result is a feature set that we denote as RFE88 which retains 88
dimensions from the ten original features which spanned 304 dimensions (F10 ∈
R304).

5 Classification Performance

The performance metrics are defined at the resolution of the extracted features
and presented in Table 2. We emphasise that the ultimate goal is deployment in
fieldwork on smartphones or embedded devices. The device will be in constant
listening mode, and mainly consume power during the data write mode that is
initiated by signal detections. A high true negative rate (TNR) is very desir-
able for this application, as preventing false positive detections leads to critical
conservation of battery power. Taking this into account, we highlight four key
results.

Firstly, training the neural networks on wavelet features shows a consistent
relative improvement compared to training on STFT features. We attribute the
improved receiver operating characteristic curve (ROC) area to the network
producing better estimates of the uncertainty of each prediction. As a result,
a greater range of the detector output 0 ≤ yi ≤ 1 is utilised. This is best
represented by the contrast in smoothness of the ROC curves, as well as the
spread of predictions visible for the classifier test output in Figure 4.

Secondly, the addition of the convolutional layer provides a significant in-
crease in every performance metric compared to the MLPs. Therefore, omitting
the specific locality constraint of the CNN degrades performance.

Thirdly, the CNN trained on wavelet features is able to perform classifica-
tions with F1 score, precision-recall (PR) and ROC areas, far exceeding the
results obtained with traditional classifiers. This is despite using an elaborate
hand-tuned feature selection scheme that cross-validates both PCA and RFE to
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Table 2: Summary classification metrics. The metrics are evaluated from a single
run on test data, following 10-fold cross-validation of features and hyperparam-
eters on training dataset.

Classifier Features F1 score TPR TNR ROC area PR area

MLP STFT 0.751 0.65 0.96 0.858 0.830
MLP Wavelet 0.745 0.63 0.97 0.921 0.875
CNN STFT 0.779 0.69 0.96 0.871 0.853
CNN Wavelet 0.817 0.73 0.97 0.952 0.909
Naive Bayes STFT 0.521 0.65 0.74 0.743 0.600
Naive Bayes RFE88 0.484 0.51 0.83 0.732 0.414
Random Forest STFT 0.674 0.69 0.89 0.896 0.733
Random Forest RFE88 0.710 0.68 0.93 0.920 0.800
SVM STFT 0.685 0.83 0.81 0.902 0.775
SVM RFE88 0.745 0.73 0.93 0.928 0.831

CNN, median filter Wavelet 0.854 0.78 0.98 0.970 0.939

Expert 1 N/A 0.819 0.89 0.85 0.873 0.843
Expert 2 N/A 0.856 0.92 0.88 0.901 0.873
Expert 3 N/A 0.852 0.77 0.98 0.874 0.901
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Fig. 4: ROC, precision-recall, and classifier outputs over test data for 4a: STFT
with 256 Fourier coefficients and 4b: wavelet with 256 scales. Target prediction
for a range of signal windows is given by the blue dotted line, with actual predic-
tions denoted by green dots. Each prediction is generated over w1 = 10 samples
– a window of 320 ms.
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extract salient features. By also comparing the lower achieving CNN conditioned
on STFT features, we note that both the feature representation and architecture
add critical value to the detection process.

Finally, median filtering the CNN’s predictions conditioned on the wavelet
features considerably boosts performance metrics, allowing our algorithm to out-
perform human experts. By using a median filter kernel (of 1 second) that rep-
resents the smoothness over which human labelling approximately occurred, we
are able to compare performance with human expert labelling. Since human la-
bels were supplied as absolute (either yi = 1, yi = 0), an incorrect label incurs
a large penalty on the ROC and precision-recall curve areas. This results in a
far exceeding ROC area of 0.970 for the CNN-wavelet network, compared to
0.873, 0.901 and 0.874 of the three human experts respectively. However, even
raw accuracies are comparable, as indicated by the near identical F1 score of the
best hand label attempt and our filtered algorithm. Further algorithmic improve-
ments are readily attainable (e.g. classifier aggregation and temporal pooling),
but fall beyond the scope of this paper.

5.1 Visualising Discriminative Power

In the absence of data labels, visualisations can be key to understanding how
neural networks obtain their discriminative power. To ensure that the charac-
teristics of the signal have been learnt successfully, we compute the frequency
spectra Xi(f) of samples that maximally activate the network’s units. We collect
the highest N predictions for the mosquito class, ŷ1, and non-mosquito class, ŷ0,
respectively. The high-scoring test data forms a tensor Xi,test ∈ RN×256×10, i =
{0, 1}, which is the concatenation of N spectrogram patches. The frequency
spectra are then computed by taking the ensemble average across the patches
and individual columns as follows:

xi,test(f) =
1

10

1

N

10∑
j=1

N∑
k=1

Xijk, where Xijk ∈ R256. (3)

Similarly, we compute spectra xi,train(f) for the two classes from the Ns labelled
training samples. We make our spectra zero-mean and unit-variance in order
to make direct comparisons between the high-scoring test spectra for each class
xi,test(f), and their reference from the training set xi,train(f). The resulting test
spectrum for the mosquito class (x1(f), Figure 5) shows a distinct frequency
peak around 650 Hz. This peak clearly matches the audible frequency of the
mosquito, confirming that the network is making predictions based on learnt
features of the true signal. The same holds true for the noise spectra (x0(f)),
which is dominated by a component around 300 Hz. A mismatch between learnt
and labelled spectra would raise warning flags to the user, suggesting the network
may for example be learning to detect the noise profile of the microphones used
for data collection rather than the mosquito flight tones.
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Fig. 5: Plot of standardised wavelet coefficient amplitude against centre fre-
quency of each wavelet scale for the top 10 % predicted outputs over a test
dataset. The learned spectra xi,test(f) for the highest N scores closely match
the frequency characteristics of the labelled class samples xi,train(f).

6 Conclusions

This paper presents a novel approach for acoustic classification of free-flying
mosquitoes in a real-world, data-scarce scenario. We show that a convolutional
neural network outperforms generic classifiers such as random forests and sup-
port vector machines commonly used in the field. The neural network, trained on
a raw wavelet spectrogram, also outperforms traditional, hand-crafted feature ex-
traction techniques, surpassing any combination of alternative feature-algorithm
pairs. Moreover, we conclude that the addition of a convolutional layer results in
performance gains over non-convolutional neural networks with both Fourier and
wavelet representations. With the further addition of rolling median filtering, the
approach is able to improve on human expert labelling.

Furthermore, our generic feature transform allows us to visualise the learned
class representation by back-propagating predictions made by the network. We
thus verify that the network correctly infers the frequency characteristics of the
mosquito, rather than a peculiarity of the recording such as the microphone
noise profile. Future work will generalise our model to multiple classes, such as
individual mosquito species, and deploy our algorithm in a physical device to
allow for large-scale collection of data.

Acknowledgements. This work is part-funded by a Google Impact Challenge
award. Ivan Kiskin is sponsored by the the AIMS CDT (aims.robots.ox.ac.

aims.robots.ox.ac.uk


14

uk). This work is part of the HumBug project (humbug.ac.uk), a collaborative
project between the University of Oxford and Kew Gardens.

References

1. Ai, O.C., Hariharan, M., Yaacob, S., Chee, L.S.: Classification of speech dysflu-
encies with MFCC and LPCC features. Expert Systems with Applications 39(2),
2157–2165 (2012)

2. Akay, M.: Time Frequency and Wavelets in Biomedical Signal Processing. IEEE
press series in Biomedical Engineering (1998)

3. Alphey, L., Benedict, M., Bellini, R., Clark, G.G., Dame, D.A., Service, M.W.,
Dobson, S.L.: Sterile-insect methods for control of mosquito-borne diseases: an
analysis. Vector-Borne and Zoonotic Diseases 10(3), 295–311 (2010)

4. Bhatt, S., Weiss, D.J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U.,
Battle, K.E., Moyes, C.L., Henry, A., Eckhoff, P.A., Wenger, E.A., Briet, O., Penny,
M.A., Smith, T.A., Bennett, A., Yukich, J., Eisele, T.P., Griffin, J.T., Fergus,
C.A., Lynch, M., Lindgren, F., Cohen, J.M., Murray, C.L.J., Smith, D.L., Hay,
S.I., Cibulskis, R.E., Gething, P.W.: The effect of malaria control on Plasmodium
falciparum in Africa between 2000 and 2015. Nature 526(7572), 207–211 (10 2015)

5. Bhattacharya, S., Basu, P.: The southern house mosquito, Culex quinquefasciatus:
profile of a smart vector. J Entomol Zoo Stud 4, 73–81 (2016)

6. Chen, Y., Why, A., Batista, G., Mafra-Neto, A., Keogh, E.: Flying insect classifi-
cation with inexpensive sensors. Journal of insect behavior 27(5), 657–677 (2014)

7. Chesmore, E., Ohya, E.: Automated identification of field-recorded songs of four
British grasshoppers using bioacoustic signal recognition. Bulletin of Entomological
Research 94(04), 319–330 (2004)

8. Clemins, P.J., Johnson, M.T.: Automatic type classification and speaker identifi-
cation of African elpehant vocalizations (2002)

9. Daubechies, I., Lu, J., Wu, H.T.: Synchrosqueezed wavelet transforms: An empir-
ical mode decomposition-like tool. Applied and computational harmonic analysis
30(2), 243–261 (2011)

10. Giannakopoulos, T.: pyAudioAnalysis: An open-source Python library for audio
signal analysis. PloS one 10(12), e0144610 (2015)
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