immunoSCAPE

Tracking and profiling of NY-ESO-1 TCR-transgenic T cells upon adoptive transfer in patients with NY-ESO-1-expressing solid tumors: association between in vivo differentiation and response/toxicity

Michael Fehlings,¹ Faris Kairi,¹ Evan Newell,¹ Alessandra Nardin,¹ Yoshihiro Miyahara,² Shinichi Kageyama,² Hiroshi Shiku² ¹ *immunoSCAPE, Singapore;* ² *Mie University, Japan*

Background

NY-ESO-1 is highly expressed in the majority of synovial sarcomas as well as other solid tumors and may be an effective target for T cell-based therapies. We conducted a clinical study of adoptive transfer of lymphocytes transduced with NY-ESO-1specific TCR in refractory cancer patients with preconditioning (TBI-1301). High-dose of 5x10⁹ autologous transduced and expanded lymphocytes, consisting of >96% T cells, was transferred into 6 patients, three of whom with synovial sarcoma. Three out of 6 patients experienced an objective clinical response (PR) and had cytokinerelease syndrome (CRS) with high-levels of IL-6 and MCP-1 that could be managed with tocilizumab. Longitudinal PBMC samples were obtained for immunomonitoring. We used high-dimensional mass cytometry and combined a 36-antibody panel with a multiplexed combinatorial peptide-MHC tetramer staining approach to longitudinally track and phenotypically characterize adoptively transferred HLA-A*02:01 NY-ESO-1 transgenic TCR T cells 14, 28, and 56 days after treatment.

Summary of patient characteristics (Ishihara M, et al. ASCO 2019):

(cell dose)	Pt ID	Age	Sex	Disease	expression (positivities in tumor tissue)	(except hematological toxicities)	response
Cohort 2 Cy & 5x10 ⁹ cells	TBI1301-07	46	м	synovial sarcoma	>75%	Fever	PR
	TBI1301-09	61	м	melanoma	>75%	CRS, fever, diarrhea, edema, ALT elevation	SD
	TBI1301-08	70	м	synovial sarcoma	>75%	CRS, flush, proteinuria, purpura, platelet decrease, interstitial lung injury(G3), cancer pain, fibrinogen decrease	PR
	TBI1301-14	65	F	ovarian ca	25-50%	fatigue, K elevation, uriac acid elevation, ferritin elevation, creatinine elevation	non-CR/ non-PD*
	TBI1301-16	25	м	synovial sarcoma	>75%	CRS, appetite loss, diarrhea	PR
	TBI1301-15	45	F	liposarcoma (myxoid cell)	50~75%	fever, hypoalbuminemia	SD
G. grading sc	ore by CTC-AE	CRS. Cv	tokine	e release syndron	ne *cases witho	ut measurable lesions	

(3) Phenotypic characterization of NY-ESO-1 and virus-specific T cells

The phenotypes of NY-ESO-1 specific T cells from all patients were compared at day 14 (A) and day 28 (B) time points and benchmarked with the virus-specific T cells identified across the total data set. At both time points, NY-ESO-1-specific T cells from the 2 responder patients who also presented with CRS clustered together with CMV (pp65)-specific cells. These cells were characterized by an activated latedifferentiated effector phenotype (CD38+ CD57+ CD45RO+, CD244+, KLRG1+, HLA-DR+). Interestingly, 28 days posttreatment NY-ESO-1-specific T cells from the non-responder patient who developed CRS also increased CD57 and CX3CR1 and clustered together with the CMV (pp65)-specific T cells. As observed above (differentiation status), NY-ESO-1-specific T cells from patient TBI07 showed high expression levels of markers associated with a naïve phenotype and clustered together with flu-specific T cells.

(4) Distribution of NY-ESO-1-specific T cells in high-dimensional space

(A) NY-ESO-1 TCR transgenic T cells were detected at in the circulation of all responders and in out of 3 non-responders. Frequencies peaked at day 14 and 28 and were undetectable in all patients ov dav 56. In addition. T cells specific for CMV, Flu, and EBV were detected across the total dataset.

ESO-1 specific T cells differed majority of NY-ESO-1-specific T cells effector NY-ESO-1-specific T nterestingly, NY-ESO-1-specific T cells were mostly differentiated in patients with CRS.

Summary

- **Objectives** This pilot study aimed to assess feasibility of longitudinally tracking and profiling adoptively transferred T cells in 6 cancer patients who underwent adoptive transfer of high-dose autologous T cells transduced to express HLA-A*02:01 NY-ESO-1-specific transgenic TCR.
- **Results** The infusion products had variable percentages of naive, TEMRA and EM CD8+ T cells, with the three patients developing CRS having the highest proportion of EM T cells. NY-ESO-1 TCR transgenic T cells could be detected in the circulation in 5 out of 6 treated patients, with frequencies peaking at day 14 and day 28; specific T cells were undetectable in all patients by day 56. The differentiation status of circulating NY-ESO-1-specific CD8+ T cells varied across patients and due to the small cohort size, a robust association between T cell properties and clinical response could not be drawn; however, a general tendency for increased differentiation during time was measured in all patients. In addition, in the three patients presenting with CRS, close to 100% of circulating NY-ESO-1-specific CD8+ r cells developed an activated late-differentiated phenotype (CD38+ CD57+ CD45RO+, CD244+, KLRG1+, HLA-DR+), similar to that of CMV-specific T cells and consistent with antigen experience, in vivo activation and effector function.
- **Conclusions** Adoptive transfer of NY-ESO-1 TCR-transgenic T cells has shown signs of efficacy in patients with high NY-ESO-1 tumor expression, with manageable adverse events. Our study shows feasibility of tracking evolution of phenotypic profiles of adoptively transferred tumor-antigen-specific T cells in patients and derive association between adoptive T cell status and clinical read-outs, and should be extended to a larger patient cohort.

Contact: alessandra.nardin@immunoscape.com

