
Linux shared libraries present
serious vulnerabilities.

Security Patching
Shared Libraries With
KernelCare+

Security Patching Shared
Libraries With KernelCare+

Linux shared libraries present serious vulnerabilities.

To operate web servers securely, it’s not enough to patch their Linux kernels. Their shared software libraries must be
patched as well. Otherwise, an enterprise leaves itself open to attacks that exploit vulnerabilities such as:

Heartbleed:

Attackers exploiting this OpenSSL request validation flaw could read a server’s memory, then gain
control of it. Immediately after it became known, it was used to steal the hospital records of 4.5
million patients. This vulnerability still exists on many systems, even though patches for it have
been available since 2014

GHOST:

Attackers exploiting this glibc buffer overflow flaw could use gethostby* functions to make
network requests that enabled them to gain control of a server. MySQL servers, Exim, and other
mail servers were vulnerable to it. Once it became known, enterprises worldwide scrambled to
patch it before it could be exploited.

Vulnerabilities like this are why almost one in five attacks target OpenSSL, but it’s not just OpenSSL and Glibc that
put Linux servers at risk. Libarchive, a compression library included by default in a vast number of Linux distributions
and software utilities, contains a vulnerability that can enable attackers to execute code on remote servers.

These sorts of library vulnerabilities are being discovered at an increasing rate: from 2017 to 2019, they nearly
doubled in number. They’re also becoming more widespread: In 2020, critical vulnerabilities known as Ripple20
were discovered in a widely-used TCP/IP library, exposing hundreds of millions of internet-connected devices to
attack.

OpenSSL and Glibc continue to present security problems
on Linux systems. As of 2020,attacks on OpenSSL
accounted for of vulnerabilities targeted in the
technology industry. In 2020, Glibc was found to handle
memory operations in a way that attackers could use to
crash it and execute malicious code. 71%

of vulnerabilities
targeted in the
technology industry.

Patching libraries through server
reboots is problematic.

71%

The usual way that enterprises deal with library vulnerabilities is by rebooting their servers. Admins often don't know
which services use which libraries, so they just reboot the whole server to update them all. These reboots, however,
bring with them serious problems:

Even if they’re patched manually, without a reboot, shared libraries may contain vulnerabilities. When libraries are
updated on disk, old unpatched files can persist in a server’s memory. What’s more, vulnerability scanners don’t
detect these old unpatched library files in memory.

Just like KernelCare, KernelCare+ patches the Linux kernel. It differs from KernelCare in that it patches libraries
as well.

KernelCare+ patches shared libraries and detects library-related vulnerabilities. It even patches library files in
memory, and does all this in a way that makes reboots unnecessary.

Right now, KernelCare+ patches the glibc and OpenSSL libraries, because these are the ones most often attacked.
In the future, it will patch more shared libraries, such as those related to PHP and Python.

Server downtime: When servers are down, web sites go down, and display only
error messages to visitors. After rebooting, it can take some time for server
performance to stabilize, and occasionally servers don’t come back up properly
after a reboot.

Windows of vulnerability: Because rebooting is laborious and problematic,
enterprises often only do it on a periodically scheduled basis, leaving their servers
open to attack. Even if they reboot every 30 days to comply with security
standards, their servers may be vulnerable for two weeks or more.

KernelCare+ patches shared libraries
without rebooting.

It employs new and sophisticated
patching technology.

To patch shared libraries on web servers, KernelCare+ employs an innovative four-stage patching process:

Once this patching process is complete, the local server’s libraries are fully protected against all known attacks.

The patch is created by the
KernelCare team.

A library’s source code--both
original and patched--are
translated into assembly
language.

These files are compared, and
the new patched code is put in a
new section of the same ELF file.

After the code is compiled and
linked, the patch is extracted
from the resulting binaries.

The patch files are extracted
from the ELF sections.

The patch is uploaded to the
patch server.

The binary files are treated as a
single patch, which is then
uploaded to a dedicated
KernelCare+ patch server.

The patch server then distributes
the patch to customers’ servers.

The patch is downloaded to
the local agent

An agent program on each local
server, lcarectl, “talks to” the
patch server, which looks for
known libraries on the local server.

The agent program then
downloads the patch needed for
each library present on the local
server.

The patch is applied to the
local server.

Using Linux APIs, memory near a
library is allocated, and the patch is
copied into it.

After ensuring that no threads are
executing the old library code, the
agent program reroutes calls from
old code to the new patched
versions via unconditional jumps.

1 2 3 4

See firsthand how KernelCare+ keeps servers safe.

Shared software libraries present serious security vulnerabilities that must be addressed. Many of these
vulnerabilities must be addressed through patching, but traditional patching methods involve server reboots that
present problems of their own. KernelCare+, in patching shared libraries without reboots, provides a better way to
keep both kernels and libraries patched.

KernelCare+ employs new and sophisticated patching
technology that addresses currentand emerging vulnerabilities

in OpenSSL, glibc, and soon many other libraries as well.

To learn more about it and evaluate it in your
environment with a free 30-day trial,

visit: www.kernelcare.com

