

<u>Hybrid Diesel-Solar</u> <u>Case Study</u>

Summary

The following case study was prepared based on data collected from publicly available 43101 reports in order to demonstrate the benefits of installing a utility scale solar-diesel hybrid system at a road accessible mine in Northern Canada.

Diesel – Solar Controllers

The conventional wisdom regarding the incorporation of solar photovoltaics (PV) into isolated grids or micro grids states that a maximum of 20% of the energy on the grid can be provided by PV due to the fluctuating nature of PV power generation. This limit is referred to as maximum PV penetration. However, with the development of diesel – solar controllers the maximum PV penetration level can now be raised to 60%. Using a complex automated SCADA platform, diesel – solar controllers maintain minimum loading parameters for diesel generators (usually 40%) while using available PV power as peak loading capacity. When the sun is shining and micro-grid is at peak capacity the controllers enable PV to provide up to 60% of grid capacity minimizing diesel consumption. Should the demand on the grid suddenly drop the controller instantly throttles the PV array to maintain the 40% loading parameters on the generator and if necessary shuts off the PV power plant entirely. Inversely, should clouds or dawn/dusk significantly reduce the available PV output, the controllers use the diesel generators spinning reserve to instantly pick up the additional load while maintaining grid stability.

These controllers allow for large utility scale PV systems to be connected to isolated grids providing maximum PV penetration without the use of batteries, significantly lowering the installed cost and providing a lower levelized cost of energy to the grid.

For further details on how diesel solar controllers work please see the Appendix C for a link to SMA's solar controller video..

Methodology

The following methodology was used to model both scenarios outlined below:

- 1. Using <u>www.sedar.com</u>, Solvest verified the following information pertaining to northern Canadian mining operations; power plant sizes, number of generators, electrical load analysis, cost per kWh, and cost per litre of diesel delivered to site.
- 2. This information was then imputed into HOMER Energy Modeling Software and RETScreen along with the parameters for the proposed energy storage system in order to determine the fuel savings and operational cost reductions. Efficiency losses for each of the proposed components were factored in allowing for accurate energy usage calculations.

The case study below demonstrates the impact of an solar-diesel hybrid solution at a heap-leach gold operation in northern Canada.

Case 1: Mine operating on diesel power plant only.

Assumptions:

- 7.5 MW maximum diesel generator capacity consisting of 5 x 1.5 MW Caterpillar Generators (Please see Appendix A for product specifications).
- Power plant operates 4 x 1.5 MW generators with an additional generator to provide peak load capacity if required.
- Cost per litre of diesel delivered to site is \$0.90 per litre including onsite handling costs.
- Total electrical consumption is 52,000 kWh per day.
- Cost per kWh for electrical generation including diesel cost, capital replacement costs for the power plant, transmission costs, and maintenance is 24 cents per kWh.

Please note all prices are CAD.

Electrical Supply Costs

Power Plant Size	Base Load Capacity	Additional Capacity	Daily Electrical Consumption	Cost per kWh	Annual Operating Cost
7.5 MW	4 x 1.5 MW Generators	1 x 1.5 MW Generator	52,000 kWh	24 cents CAD	\$4,555,200 CAD

Case 2: Mine operating with 3 MW Solar Diesel Hybrid Solution.

Assumptions:

- 7 MW maximum diesel generator capacity consisting of 5 x 1.5 MW Caterpillar Generators (Please see Appendix A for product specifications).
- Power plant operates with a continuous base load of 5.2 MW and an additional 1.8 MW induction reserve capacity.
- Cost per litre of diesel delivered to site is \$0.90 per litre including onsite handling costs.
- Mine electrical consumption is 52,000 kWh per day.
- Cost per kWh for electrical generation including diesel cost, capital replacement costs for the power plant, transmission costs, and maintenance is 24 cents per kWh.
- 3 MW AC PV power plant installed on fixed 45-degree racking modeled at an average irradiance level of 2.74 kWh per meter squared (Please see Appendix B for further details).
- Diesel Solar Controller installed that maintains a minimum generator load of 40%. While allowing for instant spinning reserve if the solar output suddenly decreases providing firm power without the need for batteries.
- Diesel Solar Controller allows for maximum PV penetration of 60% with the PV power plant acting a s peak load capacity during daylight hours.
- Carbon offset credits valued at \$50 per tonne of CO2.

Design Criteria:

- PV power plant sized to provide 60% grid penetration at peak operating capacity.
- Diesel Solar Controller units installed at the diesel power plant and PV power plant using powerline communications to operate the SCADA platform.
- Generators operate continuously at 40% during daylight hours, and provide 100% of the load during the night.
- High efficiency bi-facial modules used to maximize the power production of the PV power plant while minimizing the project footprint.
- Single axis trackers used to provide a consistent daily power curve during daylight hours.
- Integrated remote monitoring allows manufacturers to fix many of the potential hardware problems online without traveling to site. This technology also allows for remote monitoring of the daily power production.

Based on the criteria outlined above, the proposed PV power plant design consists of 10,000 x 350W modules mounted on fixed tilt racking with a diesel – solar controller for a maximum grid penetration level of 60%.

Base Load	Additional	PV Power Plant	Daily Electrical
Capacity	Capacity	AC Capacity	Consumption
4 x 1.5 MW	1 x 1.5 MW	3 MW	52,000 kWh
Generators	Diesel		
	Generators		
Annual PV	Carbon Credit	Cost per kWh	Annual Operating Cost
Generation	Revenue		
4415 MWh	\$174,000.00	24 cents CAD	\$3,320,893.00 CAD
	CAD		

Electrical Supply Costs

<u>Budget</u>

The following table contains the estimated budget for the proposed project. This budget was estimated conservatively in order to present a high cost scenario. Many of these costs can be lowered with proper project planning and co-ordination.

Description	Cost	Notes
PV Modules	\$2,200,000.00	High Efficiency 72 Cell Modules
Inverters/Grid	\$650,000.00	String Inverters, AC combiners, Transformer,
Connection		Switchgear
Equipment		
Balance of System	\$300,000.00	Disconnects, Breakers, Cabling, fittings, etc.
Diesel Solar Controller	\$500,000.00	Control modules for diesel generators and PV Power
		Plant

Racking	\$800,000.00	Fixed 45 Degree Tilt Angle Racking
Installation Costs	\$700,000.00	Includes all labour and electrical installation costs.
Shipping/Logistics	\$300,000.00	Shipping costs for required materials from
		manufacturers to site.
Project Management	\$500,000.00	This includes all design, engineering, and project
and Engineering		management costs.
Total Cost:	\$5,950,000.00	Plus applicable taxes.
	CAD	

Key Benefits:

- 1. Reduce diesel consumption related to electrical generation by 23.6% annually.
- 2. Provide maximum PV penetration while maintaining grid stability.
- 3. Reduce operating costs by \$1,234,307.00 CAD per year.
- 4. Minimize the impact of carbon taxes by reducing diesel consumption.
- 5. Improve the environmental image and public perception of the exploration project.
- 6. Solvest in partnership with RBC offers utility scale leasing options with terms ranting from 2 to 5 year, allowing for the entire cost of the system to be written off as an operating expense.

We trust that the foregoing information is satisfactory and details the benefits our proposed technology could add to your operations, please do not hesitate to contact the undersigned.

Proposal Prepared By:

Benchn

Ben Power

Project Management/Technical Services <u>bpower@solvest.ca</u> 867-333-3800 or 867-457-5690

The following pages contain the supporting appendixes for this proposal

Appendix B: CAT 1.5 MW Generator Fuel Consumption

STANDBY 1750 ekW 2188 kVA

60 Hz 1800 rpm 480 Volts

TECHNICAL DATA

Open Generator Set 1800 rpm/60 Hz/480 Volts	DM7958		
Low Fuel Consumption			
Generator Set Package Performance			
Genset Power rating @ 0.8 pf	2187.5 kVA		
Genset Power rating with fan	1750 ekW		
Coolant to aftercooler			
Coolant to aftercooler temp max	82 ° C	180 ° F	
Fuel Consumption			
100% load with fan	470.0 L/hr	124.2 Gal/hr	
75% load with fan	363.5 L/hr	96.0 Gal/hr	
50% load with fan	256.5 L/hr	67.8 Gal/hr	
Cooling System ¹			
Air flow restriction (system)	0.12 kPa	0.48 In. water	
Air flow (max @ rated speed for radiator arrangement)	1671 m³/min	59011 cfm	
Engine Coolant capacity with radiator/exp. tank	398.0 L	105.1 gal	
Engine coolant capacity	233.0 L	61.6 gal	
Radiator coolant capacity	165.0 L	43.6 gal	
Iniet Air			
Combustion air Inlet flow rate	155.8 m³/min	5502.0 cfm	
Exhaust System			
Exhaust stack gas temperature	512.8 ° C	955.0 ° F	
Exhaust gas flow rate	428.1 m³/min	15118.2 cfm	
Exhaust flange size (Internal diameter)	203.2 mm	8.0 In	
Exhaust system backpressure (maximum allowable)	6.7 kPa	26.9 In. water	
Heat Rejection			
Heat rejection to coolant (total)	1028 KW	58462 Btu/mln	
Heat rejection to exhaust (total)	1960 KW	111465 Btu/min	
Heat rejection to aftercooler	321 KW	18255 Btu/min	
Heat rejection to atmosphere from engine	142 kW 9076 Btu/mln		
Heat rejection to atmosphere from generator	86.3 KW	4907.9 Btu/min	
Alternator			
Motor starting capability @ 30% voltage dip	5077 skVA		
Frame	1602		
Temperature Rise	125 ° C	225 ° F	
Lube System			
Sump refill with filter	401.3 L	106.0 gal	
Emissions (Nominal) ³			
NOx g/hp-hr	10.52 g/hp-hr		
CO g/hp-hr	1.41 g/hp-hr		
HC g/hp-hr	.04 g/hp-hr		
PM g/hp-hr	.077 g/hp-hr		

Appendix B: Solar Irradiance Data

The following table is available through the RetScreen modelling software and was prepared by NASA. This table displays the weather data for Mayo Yukon:

Country - re	egion		Can	ada		•]	
Province / State Yukon				on		-]	
Climate data location			Мау	Mayo Airport 🔹				
Latitude				°N	63.6			
Longitude				°E	-135.9	Source		
Elevation				m	504	Ground		
Heating des	ign temperature			0°	-45.4	Ground		
Cooling des	ign temperature			°C	25.0	Ground		
Earth tempe	rature amplitude			°C	25.4	NASA		
	Air temperature	Relative humidity	Daily solar radiation - horizontal	Atmospheric pressure	Wind speed	Earth temperature	Heating degree-days	Cooling degree-days
	°C	%	kWh/m²/d	kPa	m/s	°C	°C-d	°C-d
Jan Feb Mar Ayr Jun Jul Aug Sep Oct Nov Dec	-23.3 -17.3 -9.2 1.3 8.8 15.0 16.2 12.9 6.2 -2.7 -16.0 -19.5 -2.2	79.0% 77.3% 68.3% 57.6% 53.9% 55.8% 63.8% 69.3% 73.1% 77.9% 79.7% 80.1%	0.20 0.89 2.34 4.15 5.31 6.00 5.47 4.19 2.60 1.22 0.35 0.08	89.1 89.3 89.3 89.4 89.6 89.7 89.9 89.8 89.5 89.1 89.0 89.0 89.4	1.4 1.8 2.6 2.4 1.9 1.6 1.5 1.9 2.3 1.7 1.6	-22.1 -19.5 -15.4 -6.0 3.6 12.4 13.7 9.8 2.2 -7.2 -17.7 -19.9	1,280 988 843 501 285 90 56 158 354 642 1,020 1,163 7,380	0 0 0 150 192 90 0 0 0 0 432
Source	Ground	Ground	NASA	NASA	Ground	NASA	Ground	Ground
			Measured at	m	10	0		

Appendix C: SMA Diesel Solar Controller

The following video contains a detailed description of the benefits and workings of a diesel solar controller: <u>https://www.youtube.com/watch?v=eK73eXvXRvE</u>