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Abstract
1.	 Shrub encroachment in seminatural grasslands threatens local biodiversity un-

less management is applied to reduce shrub density. Dense vegetation of Cytisus 
scoparius homogenizes the landscape negatively affecting local plant diversity. 
Detecting structural change (e.g., biomass) is essential for assessing negative im-
pacts of encroachment. Hence, exploring new monitoring tools to achieve this 
task is important for effectively capturing change and evaluating management 
activities.

2.	 This study combines traditional field-based measurements with novel Light 
Detection and Ranging (LiDAR) observations from an Unmanned Aircraft System 
(UAS). We investigate the accuracy of mapping C. scoparius in three dimensions 
(3D) and of structural change metrics (i.e., biomass) derived from ultrahigh-density 
point cloud data (>1,000 pts/m2). Presence–absence of 12 shrub or tree genera 
was recorded across a 6.7 ha seminatural grassland area in Denmark. Furthermore, 
10 individuals of C. scoparius were harvested for biomass measurements. With a 
UAS LiDAR system, we collected ultrahigh-density spatial data across the area 
in October 2017 (leaf-on) and April 2018 (leaf-off). We utilized a 3D point-based 
classification to distinguish shrub genera based on their structural appearance 
(i.e., density, light penetration, and surface roughness).

3.	 From the identified C. scoparius individuals, we related different volume metrics 
(mean, max, and range) to measured biomass and quantified spatial variation in 
biomass change from 2017 to 2018. We obtained overall classification accuracies 
above 86% from point clouds of both seasons. Maximum volume explained 77.4% 
of the variation in biomass.

4.	 The spatial patterns revealed landscape-scale variation in biomass change be-
tween autumn 2017 and spring 2018, with a notable decrease in some areas. 
Further studies are needed to disentangle the causes of the observed decrease, 
for example, recent winter grazing and/or frost events.

5.	 Synthesis and applications: We present a workflow for processing ultrahigh-density 
spatial data obtained from a UAS LiDAR system to detect change in C. scoparius. 
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1  | INTRODUC TION

Plant diversity in natural and seminatural grasslands experi-
ences severe pressure from shrub encroachment (Timmermann, 
Damgaard, Strandberg, & Svenning, 2015; Wilsey, 2018). 
Establishment of woody species is a successional stage gradually 
occurring in grasslands and may induce encroachment if not ex-
posed to natural processes, such as browsing, trampling and fires, 
or if grasslands are not managed otherwise. (D'Odorico, Okin, & 
Bestelmeyer, 2012). Shrub encroachment is enhanced by nutrient 
enrichment (Stevens, Dise, Mountford, & Gowing, 2004) and land-
use abandonment (Deák, Valkó, Török, & Tóthmérész, 2016) that 
leads to a decrease in plant species richness unless management 
strategies are implemented to keep shrub dominance low (Kesting, 
Petersen, & Isselstein, 2015). Grassland plant diversity is generally 
highest at intermediate levels of biomass (Ejrnæs & Bruun, 2000), 
and this relationship is also found for shrub encroachment (Kesting 
et al., 2015). High density of Cytisus scoparius is known to homog-
enize the landscape and to decrease plant diversity, especially in 
grasslands (Bellingham, 1998). The presence of C.  scoparius can 
favor the establishment of fast-growing species by decreasing the 
soil C:N ratio and hereby increasing N availability (Haubensak & 
Parker, 2004). Cytisus scoparius vegetation is therefore consid-
ered problematic to grasslands including many areas within its 
European native range (Sheppard, Hodge, Paynter, & Rees, 2002). 
The number of C. scoparius individuals in an area is not necessarily 
representative for invasiveness, and Parker (2000) suggests that 
structural changes in C.  scoparius (e.g., biomass and density) are 
important to assess the negative impact on plant diversity. Hence, 
the structural components are necessary for evaluating the risk 
of grassland plant diversity decline resulting from encroachment 
and to assess the efficiency of management activities. Monitoring 
efforts that highlight the need for action (e.g., shrub reduction) 
should be strategically aligned with the actual spatial scale of man-
agement (Magurran, 2016). However, monitoring shrub dynamics 
with the detail (i.e., small grain size) and spatial extent needed for 
management is challenging (Cao, Liu, Cui, Chen, & Chen, 2018).

Remote sensing covers larger areas than classical field assess-
ments of structural change, which are time-consuming and pro-
vide only local information (Wachendorf, Fricke, & Möckel, 2017). 
Satellite-based spectral information can provide valuable infor-
mation on cover of C.  scoparius at the landscape scale for areas 
with high shrub densities, although limited to observations in the 

flowering period (Hill, Prasad, & Leckie, 2016). However, the rela-
tively low resolution of satellite imagery (Aplin, 2005) does not allow 
the quantification of structural information, for example, height and 
biomass, from individuals or lower concentrated areas of shrubs. 
In contrast, observations from cameras or LiDAR (Light Detection 
And Ranging) sensors mounted on an Unmanned Aircraft System 
(UAS, also referred to as UAV or drone) can provide very high-reso-
lution information on canopy (Wallace, Lucieer, Malenovský, Turner, 
& Vopěnka, 2016) or vegetation structure (Forsmoo, Anderson, 
Macleod, Wilkinson, & Brazier, 2018; Wang et al., 2017).

LiDAR technology is a remote sensing method providing three-di-
mensional (3D) point cloud information suitable for quantifying veg-
etation structure (Lefsky, a, Cohen, W. B., Parker, G. G., & Harding, 
D. J., 2002). Airborne LiDAR has been used to map grassland vege-
tation (Zlinszky et al., 2014) and to explain variation in species diver-
sity across varying vegetation communities (Moeslund et al., 2019). 
Especially, forestry research has successfully implemented airborne 
LiDAR data to, for example, detect the composition of gymnosperm 
species in plantations (Donoghue, Watt, Cox, & Wilson, 2007), to 
evaluate ecosystem services (Vauhkonen, 2018) and management 
efforts based on forest structure (Valbuena, Eerikäinen, Packalen, 
& Maltamo, 2016), or to demonstrate how LiDAR can be used to 
measure vegetation height of sagebrush (Mitchell et al., 2011). 
Furthermore, stages of shrub encroachment and biomass estimates 
have been mapped on a coarser resolution (30 m raster) based on 
a LiDAR point density of 5.6 points/m2 (Sankey, Shrestha, Sankey, 
Hardegree, & Strand, 2013). With advancing technology, it is now 
possible to mount good quality scanners on UAS (Manfreda et al., 
2018). UAS LiDAR systems provide new opportunities to provide 
ultrahigh point density (>1,000  pts/m2) on demand; hence, map-
ping vegetation structure with high detail and sampling frequency 
becomes possible across areas of up to several square kilometers. 
UAS LiDAR systems have been used to detect individual trees and to 
measure metrics such as height and stem diameter (Wallace, Lucieer, 
Watson, & Turner, 2012; Wieser et al., 2017). The ability to detect 
single trees has been found to increase with higher point densities 
(Wallace, Lucieer, & Watson, 2014), and Balsi, Esposito, Fallavollita, 
& Nardinocchi, 2018 could contrast different shapes of horizontal 
overlapping trees using information from the whole volume of points 
in the point cloud. Furthermore, Moeslund et al., 2019 analyzed the 
potential of using airborne LiDAR-derived metrics, including a bio-
mass measure, to assess the diversity of different organisms (i.e., 
vascular plants, fungi, lichens, and bryophytes).

We demonstrate that UAS LiDAR is a promising tool to map and monitor grassland 
shrub dynamics at the landscape scale with the accuracy needed for effective na-
ture management. It is a new tool for standardized and nonbiased evaluation of 
management activities initiated to prevent shrub encroachment.
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The aim of this study was to assess the value of UAS LiDAR for 
monitoring structural change in a seminatural grassland threatened by 
encroachment of C. scoparius. We developed a semiautomatic work-
flow to measure structural features of different shrubs and to enable 
standardized monitoring for estimating spatiotemporal changes of C 
scoparius biomass. Specifically, we addressed the following questions: 
(a) How accurately can C. scoparius be classified in UAS LiDAR point 
clouds? (b) How precise can the biomass of C. scoparius individuals be 
estimated from point clouds? (c) How does the estimated C. scoparius 
biomass change between two surveys at different seasons?

2  | MATERIAL S AND METHODS

2.1 | Study area

The study was conducted in a seminatural grassland located within 
Nationalpark Mols Bjerge, Denmark (56°13′40.0″N; 10°34′30.2″E). 
The area is situated in a temperate climate zone with a mean annual 
temperature of 7.5°C and mean annual precipitation of 585 mm (Fick 
& Hijmans, 2017). The terrain elevation varies between 30 and 60 m 
above sea level. Graminoids and small, broad-leaved herbs character-
istic for European dry grasslands dominate the vegetation, while single 
standing trees and different species of shrubs are patchily distributed 
across the area. Cytisus scoparius forms dense stands in parts of the 
area and a broad-leaf forest is located toward the northeast. Besides 
naturally occurring wildlife, the area is grazed by Galloway cattle and 
Exmoor ponies and thus affected by all year grazing and trampling. 
The grazers were introduced in 2016 as part of a rewilding experiment 
for creating a more self-regulating ecosystem (Svenning et al., 2016).

2.2 | UAS LiDAR system

We integrated the Surveyor laser-scanning system (YellowScan, 
Montferrier sur Lez, France) on an 8-rotary wing UAS (MK8-3500; 
Mikrokopter, HiSystems GmbH; see Figure 1). The Surveyor is a dual-re-
turn system ranging in the 903 nm wavelength with 360 degrees scanner 
angle, based on the Velodyne VLP-16 “Puck” laser scanner with a maxi-
mum measurement range of 100 m and a ranging accuracy of 3 cm. The 
LiDAR sensor payload weighs 1.6 kg. The Surveyor has a global naviga-
tion satellite system (GNSS) receiver and inertial measurement unit (IMU) 
integrated that acts as a rover (Applanix APX15). We utilize a Trimble 
base–rover postprocessed kinematic (PPK) solution to gain subdecimeter 
accuracy for the system in XYZ directions (Chaponnière & Allouis, 2016).

2.3 | Data acquisition

Fieldwork was conducted in October 2017 (leaf-on) and April 2018 
(leaf-off). Each time the UAS LiDAR system surveyed the area in three 
separate flight paths planned with the software Kopter-Tool V2.20b 
with a flying height of 40 m above ground and a ground speed of 3 m/s. 

The planned waypoints ensured a standardized flight plan in transects 
with approximately 15 m between flight paths. We restricted the scan 
angle to ±55° (roll axis) with respect to the sensor pointing nadir (−90° 
pitch axis) resulting in an estimated overlap of 65% and thus reducing 
noise associated with very oblique scan angles.

Between the two flight campaigns, the position of 180 individ-
uals of 12 different shrub/tree taxa (65 of these were C. scoparius) 
was determined with an RTK GNSS receiver on the ground (<2 cm 
absolute accuracy) for training and validation data. The additional 
genera measured, included Juniperus, Rubus, Rosa, Quercus, Betula, 
Pinus, Sambucus, Crataegus, Prunus, Malus, and Calluna, all collected 
along random transects with complementary samples of less abun-
dant species outside (Appendix 2).

To validate the estimation of biomass from C. scoparius, ten indi-
viduals were harvested for dry weight measurements after 2 days of 
incubation at 60°C. Before cutting the shrubs, they were measured 
with the RTK GNSS device, resulting in small manual point clouds of 
25 points each (Appendix 3).

2.4 | Processing workflow

We developed a workflow for processing ultrahigh-density point 
clouds from UAS LiDAR to detect and map structural change in 
shrubs (Figure 2). Point cloud data processing was performed 
separately for 2017 and 2018 data with OPALS software v. 2.3.1 
specifically developed for handling airborne LiDAR data (Pfeifer, 
Mandlburger, Otepka, & Karel, 2014).

2.4.1 | Preprocessing and quality control of 
LiDAR data

The position data recorded during the flight by the LiDAR system 
were postprocessed using PosPac UAV v. 8.2 with data recorded 

F I G U R E  1   UAS LiDAR system with background of Cytisus 
scoparius shrubs. Photo credit: Urs A. Treier
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by a Trimble base station to obtain PPK corrected trajectory infor-
mation and point clouds. All flight lines were carefully considered 
and selected using a QGIS (QGIS Development Team, 2019) plug-in 
provided by YellowScan (YellowScan, 2016) to minimize noisy data 
from UAS turns. The resulting point clouds were then evaluated with 
12 RTK GNSS measurements of fenceposts functioning as control 
points for the vertical accuracy (RMSE: 3.9 cm in 2017 and 6.1 cm 
in 2018) and, likewise, five ground markers in 2018 to evaluate hori-
zontal accuracy (RMSE: 1.4 cm).

We performed a relative adjustment of the point cloud to im-
prove the alignment of objects (i.e., vegetation). The procedure was 
based on fitting overlapping flight strips with a least squares match-
ing technique as described in Ressl, Mandlburger, and Pfeifer (2009). 
This process aligned the point clouds better relatively by, for exam-
ple, reducing the variation in ground point height. However, because 
of the variation in flight strips, the absolute accuracy decreased to a 
vertical RMSE of 7.6 cm and 9.1 cm for 2017 and 2018, respectively, 
and a horizontal RMSE in 2018 of 6.5 cm. For further details on pre-
processing and quality control, see Appendix 1.

2.4.2 | Applying thresholds to obtain a shrub layer 
point cloud

We coarsely divided the point cloud into height-based vegetation 
classes and a ground class to reduce processing time for the later shrub 
classification. A digital terrain model (DTM) derived from the minimum 
point height within a 1x1 m moving window was used to calculate nor-
malized height of points (NormZ) (Appendix 2). We then classified the 
points using thresholds into ground (NormZ < 0.15 m), low vegetation 
(NormZ < 0.3 m), and high vegetation (NormZ > 3.5 m) leaving a shrub 
layer point cloud of medium height vegetation (0.3 m < NormZ < 3.5 m). 
Calluna vulgaris fell into the low vegetation layer and therefore was ex-
cluded from the further shrub classification procedure.

2.4.3 | Generating point-based reference data of 
structural features

From the 180 measured GNSS points, we gathered adjacent LiDAR 
points within a size-specific area to comprise a reference dataset 
of 13 classes (11 shrub taxa, fenceposts, and shrub absence points; 
Appendix 2). Reference data were collected as presence/absence 
(PA) of shrubs in late 2017 and early 2018, that is, between the UAS 
flights. Within this period, we would only expect shrubs to disappear, 
for example, browsing/trampling by animals, which would mean that 
such individuals will be included as a GNSS record in 2017 but would 
not be there in 2018. Because of the digital assignment of training/
validation data, no points would represent the shrub in 2018, and 
therefore, no points will be assigned to the given shrub class.

We developed structural features derived from the UAS LiDAR 
point cloud to represent vegetation morphology with the aim to clas-
sify shrub species (Appendix 2). We targeted the variables to repre-
sent shrub species on varying levels of scale, ranging from small-scale 
leaf characteristics to larger-scale shrub growth form and shape. The 
shrub growth form is here interpreted as the general appearance 
of the shrub and of how branches and leaves are arranged. Hence, 
it corresponds to specific, although overlapping features, such as 
structural complexity, density, and light penetration (Popescu, 2011). 
Specifically, we calculated the variance in height from a fitted nor-
mal-based plane (Pseudowaveform) to resemble roughness or struc-
tural complexity (Van Aardt et al., 2012). The amount of points (Point 
count) and average distance between points (Point distance) were 
used as a measure of density, while light penetration was represented 
by including the count of ground points classified by the above men-
tioned threshold (Ground points count) and the average number of 
returning echoes (No. of echoes). Additionally, we calculated a Rank 
feature, where points within the search radius are ranked by lowest 
to highest point and assigned a corresponding value between 0 and 

F I G U R E  2   Flowchart of UAS LiDAR 
processing chain to derive structural 
information (biomass) from classified 
shrub species and comparing between 
two time periods

Biomass mapping & change detectionBiomass mapping & change detection

3D classification with machine learning3D classification with machine learning

Generating point-based reference data of structural featuresGenerating point-based reference data of structural features

Applying thresholds to obtain a shrub layer point cloudApplying thresholds to obtain a shrub layer point cloud

Preprocessing and quality controlPreprocessing and quality controlUAS LiDAR
point cloud 

GNSS 
occurrence
observations

Biomass
measurements

GNSS shrub
structure points

Biomass estimationBiomass estimation
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100. This measure was intended to represent shrub shape and can 
particularly be useful for recognizing overhanging canopies. Also, 
characterizing shrub leaf and branch features, the angles between a 
point and all its neighbors within a search radius were extracted and 
averaged as the negative openness for each point. The negative open-
ness refers to a conical view looking downwards, while oppositely the 
positive would be pointing up. It were originally developed for pix-
el-based terrain modeling by taking the mean openness angle from 
the eight neighboring pixels (or more, depending on the search radius) 
in each cardinal and intercardinal direction (Yokoyama, Shirasawa, & 
Pike, 2002). However, all points in any possible direction within the 
search radius were considered for the 3D point attributes and there-
fore not necessarily restricted to eight directions.

From the initial set of 17 structural features, we retained seven 
after testing for autocorrelation and variable importance (Table 1). 
Variable importance was calculated manually based on the decrease 
in overall accuracy when leaving one variable out in the classifica-
tion process (Appendix 2). Variables with high pairwise correlation 
(ρ > .75) and low importance scores were removed from the dataset.

2.4.4 | Machine learning for 3D classification of 
Cytisus scoparius and other shrub species

For the 3D classification of the shrub point cloud, we utilized the 
built-in classification procedure in the OPALS software. It uses the 
tree-based decision algorithm (De'ath & Fabricius, 2000) termed 
recursive partitioning via the rpart package for R (Therneau & 
Atkinson, 1997). The algorithm operates by dividing the dataset for 
each chosen variable separately, that is, it finds the splitting value 
for tree branches which results in the purest nodes, that is, most 

homogenous. A perfectly pure node refers to all observations being 
assigned the correct label caused by the split value. When the vari-
ables could not further increase the node purity, the resulting deci-
sion tree was pruned with the complexity parameter set to 0.001 for 
a final simplified decision tree. We fixed the complexity parameter 
after a trial process where we lowered the parameter stepwise until 
the accuracy started to decrease. The aim was to run the classifica-
tion with the lowest possible complexity parameter.

The classification accuracy was assessed by randomly stratifying 
90% of the reference data as training and 10% as testing data. The 
quality and reliability of accuracy assessments are affected by the 
reference data input and sampling strategy (Millard & Richardson, 
2015). We therefore also assessed a 70% training to 30% validation 
data split (Appendix 2). Stratification was done among the defined 
classes. We generated 100 such 90/10 and 70/30 training and val-
idation datasets as input for the OPALS classification algorithm. 
For each set, classification accuracy was assessed from the result-
ing confusion matrices using R to calculate overall accuracy and 
Kappa values, while the class-wise accuracies were evaluated with 
precision, recall and the harmonic mean between the two, termed 
“F1” (Forman, 2003). The 70/30 split resulted in <0.5% decrease in 
overall accuracy and Kappa coefficient (Appendix 2). To increase 
the amount of training data used in the final model for extracting 
biomass metrics, we applied a model validated by the 90/10 split 
(Appendix 2). From the predictions, we obtained the class probabili-
ties allowing fuzzy classifications, that is, the membership of a class 
is represented by a probability value between 0 and 1 rather than a 
Boolean value (true or false) as with traditional hard-boundary clas-
sification(Foody, 1996; Zlinszky & Kania, 2016). Finally, a classifica-
tion was performed with 100% of the reference data and printed 
into the full point cloud for visualization purposes.

TA B L E  1   Variables selected for final classification

Variable

Overall 
importance 
score

Search 
radius (m) Morphological features

Ecological relevance 
(presumed) Computation description

Pseudowaveform 0.048 0.5 Shrub growth form Increases with structural 
complexity (roughness)

Point height variances from a 
normal-fitted plane

Point count 0.013 0.5 Shrub growth form Increases with surface 
area and density

Number of points

Ground points 
count

0.006 0.1 Shrub growth form Increases with light 
penetration and 
decreases with density

Number of points including ground 
points

Rank 0.002 0.1 Shrub shape and growth 
form

Highest values at upper 
surface and lowest at 
bottom canopies

Relative position in neighborhood. 
Max value = 100 and min value = 0

Negative 
openness

0.005 0.1 Shrub shape, leaf 
orientation, and branch 
arrangement

Increases with surface 
gaps

Angular distance between points 
from a nadir view

Point distance 0.025 0.1 Leaf structure and 
branch arrangement

Decreases with density Average linear distance between 
points

No. of echoes 0.004 0.1 Leaf structure and 
branch arrangement

Decreases with light 
penetration

Average number of strongest and 
last return echoes
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2.4.5 | Assessing variable and model transferability

We used a Wilcoxon signed-rank test to evaluate the variable signa-
tures for each shrub species in the validation samples from 2017 and 
2018 (Appendix 2). Furthermore, the classification procedure was 
applied to a merged point cloud, consisting of the mixed signatures 
from 2017 and 2018.

Additionally, we applied a similar classification procedure as de-
scribed above, but with the variables projected into 2D raster data 
(Appendix 2). The 2D classification was performed with R statistics 
3.5.0 (R Core Team, 2016) allowing us to test alternative classifica-
tion algorithms.

2.4.6 | Biomass estimation and change detection

To estimate the relationship between actual measured biomass and 
structural information for each of the 10 harvested C.  scoparius 
shrubs, we extracted digital volume metrics based on the NormZ 
variable equivalent to vegetation height (Appendix 3). The NormZ 
pixel values were computed using mean, max, and range (max–min) 
values from the points and thereby representing volume metrics by 
multiplying the height with the pixel area (25 cm2). We then used the 
manually constructed 3D point clouds from the field GNSS measure-
ments to delimit and extract summed volume values for each of the 
harvested shrubs (Appendix 3).

The extracted volume metrics were all compared for correlation 
with nonparametric Spearman's rank correlation using R statistics 
3.5.0 (R Core Team, 2016). Furthermore, we developed linear mod-
els from the volume metrics to explain biomass from the harvested 
samples and evaluated them by calculating adjusted R squared 
values (R2

adj
) via the lm() function in R. We used R2

adj
 values from 

the models to cope with the relatively low sample size of 10 and 
thereby avoid making too optimistic conclusions. We applied the 

model coefficients (Figure 3) from the best fit (maximum NormZ) 
to calculate a biomass estimate for the rasterized variable across a 
6.7 ha area and for both datasets (2017 + 2018). During the raster 
projection, we incorporated class probabilities from the final fuzzy 
classification models (see accuracy assessment in Appendix 2) to 
exclude points classified as C.  scoparius with <60% probability for 
one set of maximum NormZ values. Likewise, a second set of values 
was extracted by adjusting this probability threshold more strictly 
to 80%. At last, the change in biomass was mapped and aggregated 
from 5 cm resolution to 2.5 m grid cells to emphasize the change.

3  | RESULTS

3.1 | Detection of Cytisus scoparius in a 3D 
landscape of points

After georeferencing and noise filtering, our UAS LiDAR system gen-
erated 59 million and 53 million points during the 2017 and 2018 
flight campaign, respectively, for the 6.7 ha area. For 2017, 12.6% of 
these points were classified into the shrub layer, and 6.1% in 2018. 
Likewise, 29.8% and 40.5% of the shrub layer points were classi-
fied as C. scoparius in 2017 and 2018, respectively (see Appendix 2). 
The overall accuracy from the 90/10 split classification was 86.9% 
for 2017 and 95.2% for 2018, while the Kappa coefficient resulted 
in 83.7% for 2017 and 92.9% for 2018. The 70/30 split resulted in 
<0.5% decrease in overall accuracy and Kappa coefficient (Appendix 
2). Focusing exclusively on the C. scoparius class, the F1 measure was 
96.2% in 2017 and 98.4 in 2018 (Table 2). The accuracy assessment 
from the specific model used for obtaining biomass differed with 
+0.2% in 2017 and +0.5% in 2018 from the mean of the iterative 
model validation with 90/10 splits (see details in Appendix 2).

The analogous merged classification showed a decrease in 
overall accuracy (83.2%) and Kappa coefficient (78.0%), while the 

F I G U R E  3   Scatterplot with actual measurements of Cytisus scoparius biomass on Y-axis and LiDAR-based volume on X-axis. Dashed blue 
lines represents corresponding linear regression models: Biomass ~ Volume for mean, max and range values. (R2

adj
 values for the models: 

mean, max and range values: .72, .77, and .61 with p-values respectively: .0012, .0005, and .0048). Formulas: Y(Mean) = 92.49 + 4,575.88X; 
Y(Max) = 77.12 + 4,696.16X; Y(Range) = 92.98 + 12,327.87X
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C. scoparius F1 remained equally high (96.3%) (Table 2). For the more 
traditional 2D classification approach, the random forest classifier 
performed in general better with overall accuracies of 45.6% for 
2017 and 42.6% for 2018 (see Appendix 2). However, the recursive 
partitioning classifier did not perform markedly worse (overall accu-
racy of 47.1% and 38.9% for 2017 and 2018).

The color-coded point cloud visualizing the resulting shrub clas-
sification (Figure 4a) revealed that C. scoparius shrubs were detected 
across the area in various densities, from single individuals to large 
thickets. When inspecting the classification probabilities in the 
point cloud (Figure 4b), we recognized a greater certainty to predict 
C. scoparius in the leaf-off period in 2018 than in the leaf-on period. 
Furthermore, it is noticeable that C. scoparius shrubs were detected 
underneath the forest canopy as well (Figure 4a1).

3.2 | Cytisus scoparius biomass estimation

The LiDAR-derived volume metrics of NormZ (average; maximum; 
range) correlated well with the biomass measurements of the 10 har-
vested C. scoparius shrubs (Spearman's ρ =  .87; .88; .88). However, 
the inclusion of very small shrubs in the harvested samples chal-
lenged the LiDAR detection of biomass (Appendix 3). The maximum 
volume resulted in the best linear fit with R2

adj
 = .77 (Figure 3). The 

mean and range metrics performed worse in a linear model with 
R
2
adj

 = .72 and R2
adj

 = .60, respectively. The accuracy assessment from 
the specific model used for obtaining biomass metrics is presented 
in Appendix 2.

3.3 | Cytisus scoparius biomass change

We extracted the total biomass sum from the points with >60% and 
>80% probability of being C. scoparius. This resulted in 7,500.4 and 
5,257.6 kg in 2017 and 2018, respectively, for >60% and, likewise, 
5,320.9 and 4,993.0 kg for >80%, in an area of 6.7 ha. For the com-
parison, we included only the overlapping areas that had an aver-
age point distance below 3 cm. On the landscape scale, this resulted 
in an average biomass decline of C. scoparius from autumn 2017 to 
spring 2018 of 33.4 and 4.9 g/m2 for the 60% and 80% probability 
thresholds, respectively. However, on a local scale the distribution of 

biomass changes in the area varied but was similar for both thresh-
olds. An upscaled visualization from 5 cm resolution to grid cells of 
2.5 m × 2.5 m revealed a pattern of larger decreases in biomass to 
be identified in especially the northeastern part of the area, while in 
other parts, we observed no or a slight increase in biomass between 
the 2 years (Figure 5).

4  | DISCUSSION

With the sole use of UAS LiDAR-derived structural information, we 
identified shrub classes with an overall mean accuracy of more than 
86.9% regardless of the year and detected C. scoparius with at least 
96.2% F1 accuracy in the point cloud (Table 2). Furthermore, using a 
simple volume metric (NormZ) from the classified C. scoparius point 
cloud, we explained 77% of the variation in actual harvested biomass 
(Figure 3) and quantified a reduction of 327.8 kg during the winter 
period from autumn 2017 to spring 2018, assuming the 80% prob-
ability threshold to be most accurate.

4.1 | LiDAR-derived structural features for shrub 
classification

Our study demonstrates that ecologically meaningful features can 
be extracted from UAS LiDAR point clouds which represent the 
structural appearance (i.e., growth form, shape, and leaf/branch 
orientation and arrangement) of different shrub species, especially 
C. scoparius. We targeted the variables to represent shrub species on 
varying levels of scale, ranging from small-scale leaf characteristics 
to larger-scale shrub growth form, density, and shape. For example, 
C. scoparius is characterized as being light competitive (Peterson & 
Prasad, 1998), hence, reducing the available light beneath the can-
opy. However, compared with, for example, the compact canopy of 
Juniperus communis, it may allow more light to travel through, es-
pecially during leaf-off periods, eventually resulting in more ground 
hits of the LiDAR beams.

The variable that explained most of the variation, Pseudowaveform, 
was computed with a relatively large search radius (0.5 m) and there-
fore represents the variation in the structure of shrub branches and 
leaves (Table 1). By calculating on this relatively larger scale, we 

TA B L E  2   Accuracy assessment of the point cloud classifications of Cytisus scoparius from autumn 2017 and spring 2018. Classification 
accuracies are averages from 100 model iterations of randomly selected training/validation data (90/10% split) and with standard deviations. 
Overall accuracy and Kappa coefficient evaluate the classification of all classes, while the F1 score (Forman, 2003) assesses the performance 
in predicting the C. scoparius class. The last row presents the results from a merged classification including both the 2017 and 2018 point 
clouds

Time period

Overall accuracy Kappa coefficient F1 score—C. scoparius

Mean SD Mean SD Mean SD

Autumn 2017 86.9 0.006 83.7 0.007 96.2 0.005

Spring 2018 95.2 0.004 92.9 0.006 98.4 0.003

Merged 83.2 0.007 78.0 0.010 96.3 0.004
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expected the variable to be less affected by differences in leaf abun-
dance between the two flights. From analyzing the shrub signatures, 
we find Pseudowaveform to be stable between the two seasonal 
states and throughout the classes, except for Betula (Appendix 3). 
Structural complexity in vegetation is often assessed by the vari-
ance of derived LiDAR metrics relative to a horizontal plane (Kane 
et al., 2010; Kukunda et al., 2019). Textural metrics in image analy-
sis can similarly be used to distinguish structurally dissimilar species 
(Oldeland, Naftal, & Strohbach, 2017), but are limited to detect only 
2D surface differences. Here, we utilize information of 3D vege-
tation structure. The variance for example will be set relative to a 
normal-based plane. Measurements of shrub growth form may be 
difficult to conduct and define in field-based surveys; hence, there 
is a focus on retrieving metrics as, for example, diameter at breast 
height (DBH; Wieser et al., 2017). Nonetheless, the high importance 
of Pseudowaveform for classifying shrub species suggests that shrub 
growth form is highly relevant for distinguishing species. Ground 
points count and no. of echoes express the amount of light penetrating 
a shrub to represent density. Density is known to be highly variable 
among species (Van Leeuwen et al., 2011) while light penetration 
may also reflect habitat characteristics for the species composition 
(Moeslund et al., 2019). Density was also computed more directly 
with the amount of LiDAR points within a 50 cm search radius (point 
count), while point distance was computed on a smaller scale mainly 
emphasizing single leaf/branch structure and arrangement. Because 
of the direct influence from density, it remains challenging to esti-
mate biomass in areas with high species heterogeneity (Wijesingha, 
Moeckel, Hensgen, & Wachendorf, 2019), and to improve accuracy, 
it is necessary to separate the species by a classification process. The 
negative openness was used as a metric for differentiating the struc-
tural complexity in especially the surface of shrubs. Specifically, the 
openness variable detects concaveness (Yokoyama et al., 2002) or in 
this case holes in the vegetation surface. From the shrub signatures, 
we see that negative openness is seasonally affected by a species 
like Betula (Appendix 3) showing lower concaveness in the leaf-on 
than leaf-off period. This can possibly be explained by leaves form-
ing a relatively round and smooth canopy, whereas the branch gaps 
will be more exposed during leaf-off period. Finally, to differentiate 
between C. scoparius and low tree species in the shrub point cloud 
with overhanging canopies, for example, Malus sp. or Prunus cerasif-
era, the classification benefitted from the Rank variable. Here, lower 
points from a hanging branch without points underneath would be 
ranked lower than C. scoparius branches, which often will have lower 
points beneath, from low vegetation or ground. Thus, computing 
ecologically meaningful variables from 3D point clouds is possible 
but needs to be based on ecological knowledge and targeted on the 
focal species or vegetation class.

The performance of the LiDAR-derived structural variables to 
detect and distinguish shrub species in this study demonstrates a 
promising use at the level of detail obtainable with a drone-based 
platform (Table 2). In addition to the increased spatial resolution and 
structural detail, our landscape study of C. scoparius differs from Hill 
et al. (2016) in being independent from observations during flower-
ing periods. However, phenological events can also be considered 
an important aspect of understanding the development of shrub en-
croachment. In particular, an increase in temporal resolution would 
be beneficial for remote sensing studies of vegetation to understand 
how such variables vary with seasonality. A study by Müllerová et al. 
(2017) demonstrates an example of this, by recognizing two invasive 
species from differently scaled images and throughout the season. 
Hence, using spectral information in combination with LiDAR could 
extend the monitoring possibilities even further.

4.2 | Workflow and classification challenges

The use of LiDAR-derived features poses many challenges and de-
mands a novel way of developing and understanding these 3D meas-
ures in an ecological context. Thus, further improvements are possible 
by implementing ecological or biological knowledge in the computed 
variables. Depending on the focal species, the LiDAR-derived features 
can be adjusted to fit specific morphological characteristics, and a 
more general approach could be developed to assure transferability 
for many shrub species. For C. scoparius, the change in structural sig-
nature between leave-on and leave-off is expected to be low due to 
the small leaves (Appendix 2). However, with the onset of flowering, 
this might change for some of the variables. Alternatively, for other 
shrub species it might be important to develop variables that are in-
dependent of seasonal states to assure transferability of the classifier. 
For C. scoparius, we found a significant change in the sample distri-
butions in three of the density variables (PCount_ground, PCount, 
and PDist) which indicates that seasonal variability might be seen in 
these variables. However, it is the combined signature that is impor-
tant for the classification process and the distinction among species. 
When evaluating normalized vegetation height (NormZ) used for bio-
mass estimation, we find no difference between the two flight dates 
in C.  scoparius, which is different for Betula species. These findings 
highlight the need for variable adjustments and/or seasonal timing, to 
obtain reliable biomass estimations for a given target species.

We implemented a workflow to improve the assessment of 
shrub biomass during encroachment. During the development, we 
experienced several challenges which could affect the results and 
need careful consideration and evaluation during implementation: 
(a) misalignment reduce spatial accuracy, (b) thresholding of major 

F I G U R E  4   Classification results visualized directly in the 2018 point cloud in a vegetated area (a1) and in more open land (a2). The 
general classes are showing both, the main vegetation classes obtained from thresholding (Ground, Low vegetation, High vegetation) as 
well as the classes obtained by the tree-based classification. The orange colors represent points classified as Cytisus scoparius. Lower figures 
show 3D clips of the 2017 (b1 to b3) and 2018 (b4 to b6) C. scoparius point clouds. Points are here color-coded with the resulting class 
probabilities ranging from 60% (dark blue) to 100% (light green). The generally classified ground points are colored in grey
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vegetation classes, for example, trees versus low vegetation, (c) sam-
pling of training data, and (d) selection and development of targeted 
structural features. Below we outline these challenges and provide 
perspectives on future directions.

Because of observed misalignments in the combined point clouds, 
resulting from different laser beams, flight strips, and uncertainties 
in absolute GNSS positioning, we rectified the relative accuracy in 
the datasets, which negatively influence the absolute accuracy, that 
is, absolute geographic position of LiDAR points. However, the de-
crease in precision of XYZ-coordinates was relatively small (RMSE: 
vertical <1.4 cm and horizontal <5.1 cm). When considering the scale 
of which we recognize C. scoparius, we believe that a high relative ac-
curacy among points is more important for describing the structural 
features of a shrub properly. However, in monitoring programs, fixed 
features (i.e., ground control points) allowing to align multiyear data 
would be advisable.

Threshold approaches to filter data noise as well as for doing a 
first general classification are essential for effective data processing. 
However, finding meaningful thresholds in heterogeneous plant com-
munities with highly variable structures is difficult and hard to gener-
alize across a larger area. Therefore, deciding on exact thresholding 
values often is a trade-off issue, by either including an amount of noise 
or excluding useful data. In our study, we emphasized to include as 
much data as possible, accepting some levels of uncertainty. Still, with 
broadly defined threshold values, points representing a target species 
may disappear in these first steps of filtering and classifying. For exam-
ple, we attempted to include training data from the small-sized shrub 
Calluna vulgaris; however, these points were set aside in the general 
class “Low vegetation” and thus not included in the tree-based classifi-
cation. Reducing the dataset is crucial for optimal processing speed and 
point cloud visualization but choosing general classes and thresholds 
must be evaluated and depends on the target species. If targeted, the 
C. vulgaris shrubs could most likely be identified by running the classi-
fication procedure on the low vegetation points and could perhaps be 
implemented in a future study including herbaceous vegetation.

Generally, one should aim for balanced training/validation data 
(Millard & Richardson, 2015). However, this can be challenging when 
working in natural areas with a patchy and heterogeneous distribu-
tion of vegetation. First, a random sampling strategy to collect data 
objectively is desired, a strategy we pursued with the transect ap-
proach. However, this method may only cover the more dominant 
species and is not enough to catch the full variation of shrub species 
in an area. Second, it might be impossible to equally sample rare spe-
cies occurring only in few places, even if all individuals are sampled. 
We therefore included datapoints outside our transects from less 
abundant shrub species, as it would not present the full picture of the 
area if ignoring those. When covering extents of several hectares, 

we are aware that some species are possibly missing in the training 
data, but that does not mean that they do not exist in the point cloud.

It is important to design point-based attributes to emphasize 
structural features, corresponding to the species or vegetation type 
of interest. The described workflow is semiautomatic, given a com-
prehensive input dataset of UAS LiDAR point clouds, training data 
for classification, and ground truth data for developing the biomass 
model. Depending on the study focus and target species, it is possible 
to design point-based attributes that emphasize structural features, 
corresponding to a species or vegetation type of interest. For exam-
ple, different search radii are required when studying differences in 
trees or herbs matching the level of scale. Likewise, attributes can 
be modified to detect specific structural features of species or indi-
viduals, for example, deformity caused by pathogens. The structural 
uniqueness, as defined by growth form, density, roughness, and light 
penetration seen in different shrub species may be less influenced 
by seasonality and physiological stress factors (i.e., water and nutri-
ent availability) than spectral signatures. However, when attempting 
to distinguish structural similar species including spectral informa-
tion in the classification procedure might help (Zlinszky et al., 2014).

4.3 | Spatial patterns of C. scoparius biomass change

Depending on the probability threshold for detecting a C. scoparius 
shrub, we estimated a decrease in biomass change of 4.9–33.4 g/m2 
between the two mapping dates. Nevertheless, we found a consist-
ent spatial pattern of biomass change for both thresholds, indicating 
a large decline in the northeastern part of the area and no or a slight 
increase in the southwestern part (Figure 5). There might be several 
reasons for this observed spatial pattern:

First, the slight increase in biomass could result from late autumn 
or early spring growth. The shrubs are not expected to grow during a 
Danish winter season; however, the timing of flight campaigns may still 
include some late autumn or early spring growth. In addition, C. scopar-
ius branches contain chlorophyll, which might be able to induce growth 
in warmer periods and favor early growth in spring. The reason why 
biomass increase was mainly observed toward the southwest of the 
study area could be low inter- and intraspecific competition or vari-
ation in microclimatic conditions. A freestanding individual without 
neighbors is more likely to grow and expand due to lack of competition 
when the conditions are suitable. In contrast, competing neighbors 
may supress growth of C. scoparius individuals in densely populated 
surroundings. The possible intraspecific interaction has previously 
been raised in the literature (Paynter, Fowler, Memmott, & Sheppard, 
1998), and in accordance with this, the observed spatial pattern in bio-
mass changes suggests that C. scoparius in the open land (midwestern 

F I G U R E  5   Orthophoto from the study area (Kortforsyningen Danmark, 2019) with overlay of change in maximum Cytisus scoparius 
volume between 2017 and 2018 UAS LiDAR survey. A C. scoparius class probability threshold is applied and only allowing points classified 
with >60% (top) and >80% (bottom) probability to be included for change detection. The change is upscaled from 5 cm to 2.5 m2 for 
visualization. Blue squares represent growth, while red squares show a biomass decrease. White squares indicate no or little change
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part) tended to slightly increase, while the denser stands toward the 
northeast of the study area showed a decline in biomass (Figure 5).

Second, the reasons for a biomass decline could be either leaf fall 
(Peterson & Prasad, 1998), which due to the summed 2.5 m grids, is ex-
pected to be larger in denser stands, or external factors, such as graz-
ing or frost. Galloway cattle and Exmoor ponies graze the area as part 
of a rewilding initiative, and no additional food sources are supplied 
to the animals. Hence, at wintertime when the green vegetation be-
comes sparse, the animals might feed on hardy shrubs like C. scoparius, 
or cause damage to shrubs by trampling. Therefore, one alternative hy-
pothesis explaining the spatial pattern of C. scoparius biomass change 
is that the animals are favoring the northeastern part of the study area. 
This area is substantially more forested, and the grazers might bene-
fit from shelter provided by the trees during harsh winter conditions. 
Alternatively, abiotic conditions linked to topographic features, such 
as light availability and freezing temperatures during winter might limit 
plant growth and harsh winters would potentially cause C. scoparius to 
die (Peterson & Prasad, 1998). Extracting such topographic variables 
describing light availability and protection against freezing could pro-
vide predictors for the observed change in biomass. The availability of 
terrain topography data from the UAS LiDAR point cloud would facili-
tate such a follow-up study at very high resolution.

While the observed pattern in biomass change is independent 
of the probability thresholds for C. scoparius detection, the absolute 
biomass change might be overestimated. When comparing C. scopar-
ius class probabilities in three areas with varying population densities 
(Figure 4b), there are more C. scoparius points in 2017 than in 2018, 
especially in areas with dense stands. In the leaf-on period (2017), a 
larger number of forbs, tall grasses, and shrubs have probably been 
included in the training data for C. scoparius, as they grow within and 
around shrubs. This probably also explains why in 2017 more C. sco-
parius points have been classified with lower probabilities than in 2018 
(Figure 4b and Appendix 2). More LiDAR points included from entan-
gled vegetation can lead to a larger volume estimate per individual and 
probably cause slight overestimation of C. scoparius biomass in 2017.

4.4 | Relevance for nature management

The spatial variation in C.  scoparius biomass change indicates that 
shrub dynamics differ in the subareas of the mapped area, possi-
bly due to varying importance of ecological drivers, also yet to be 
studied (Figure 5). Our findings highlight that detection of change in 
shrub density and biomass with high resolution is important when 
assessing shrub encroachment in monitoring programs for nature 
management. Traditionally, remote sensing studies have classified 
vegetation with a two-dimensional approach from spectral informa-
tion or rasterized LiDAR information. These raster-based methods 
are efficient in identifying cover or presence of certain grassland 
species and vegetation types (Hellesen & Matikainen, 2013; Zlinszky 
et al., 2014). However, to quantify biomass changes and to fully un-
derstand the effect of shrub encroachment on plant diversity more 
comprehensive knowledge is needed. While LiDAR observations 

from a manned aircraft were applied to map coarse-scaled shrub 
encroachment characteristics from a single species (Sankey et al., 
2013), we are now able to separate species or genera directly in the 
point cloud and to detect fine-scale biomass dynamics from a target 
species by utilizing a drone platform. With the use of the established 
workflow based on a UAS LiDAR system, we provide a new approach 
for monitoring shrub species dynamics. In this study, C. scoparius is 
covering the spatial extent corresponding to management opera-
tions, but also capturing the local-scale information needed for de-
tecting change and its spatial variation. Again, the benefits of using 
LiDAR are the vegetation penetration ability (Lefsky et al., 2002) and 
our findings suggest that LiDAR-derived point clouds are of such a 
quality, that detecting species of interest even beneath a covering 
canopy is achievable, as, for example, forest understory species. This 
will make it possible to monitor and guide management programs for 
noxious invaders such as Rhododendron ponticum (Sanders, 2017) or 
rare species such as Allium tricoccum beneficial for indicating favored 
nature or ecological conditions (Leduc & Knudby, 2018). In a study 
by Chance et al. (2016), LiDAR is utilized to map the distribution of 
two invasive shrub species in an urban environment with reported 
lower accuracies for shrubs beneath closed canopies. The impor-
tance of mapping understory vegetation is further highlighted in a 
review by Hernandez-Santin, Rudge, Bartolo, & Erskine, 2019, and 
the findings from our study should be relevant and encouraging to 
further studies in this direction.

Shrub encroachment is influenced by several factors that makes 
it a complex issue for management and conservation at landscapes 
and regional scales (Cao et al., 2018). The presented workflow pro-
vides a potential improvement on several aspects of nature monitor-
ing. By the semiautomatic processing and the use of a UAS-based 
platform, the temporal resolution is no longer limited to snapshot 
observations, for example, once a year or less. Hence, field opera-
tions can be carried out on multiple times through a season, with the 
inclusion of beneficial seasonal states of vegetation. However, we 
also demonstrate that UAS LiDAR data allow for comparable mea-
sures of shrub encroachment even in different seasonal states and 
hereby displaying the potential multipurpose use from this type of 
data. Our comparison with a similar 2D remote sensing classification 
approach (Appendix 2) highlights the benefits from using three-di-
mensional information. Hence, we increase the spatial dimensional-
ity from traditional 2D mapping studies by recognizing shrub taxa in 
three-dimensional space contributing to reliable biomass estimation 
which is much needed for deeper understanding of shrub encroach-
ment dynamics. With the fine-scale information about biomass, it 
will be easier to detect and manage dense stands of C. scoparius or 
other shrub species during encroachment with potential negative 
effects on plant diversity (Kesting et al., 2015).

5  | CONCLUSION

Our study presents a novel method for assessing shrub dynamics 
in 3D, based on the arrangement and orientation of points in space. 
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We demonstrate an efficient way of determining specific structural 
features for classifying shrub species. Seven different point-based 
structural variables were developed based on ecological knowledge 
to distinguish C. scoparius from other vegetation. Using a tree-based 
classification procedure, we identified 11 different shrub species 
with an overall accuracy of 86.9% and 95.2% in two independent 
point clouds acquired in 2017 and 2018, respectively. Derived from 
the point cloud derived height-based maximum volume of C.  sco-
parius shrubs, we established a linear model to explain 77.4% of the 
variation seen in actual measurements biomass from 10 harvested 
and weighed individuals. Projected biomass in C. scoparius with an 
80% class probability declined by 4.8 g/m2 between 2017 and 2018. 
However, we found substantial spatial variation in biomass change 
with a patchy distribution of C.  scoparius decrease and or growth. 
These findings suggest that the combined information from small- to 
large-scale observations is necessary to fully understand shrub en-
croachment and highlights the potential application of this method 
for fine-scale management of C.  scoparius populations on a land-
scape scale. Moreover, our study encourages more studies inves-
tigating the causes of C. scoparius biomass change variation and its 
effect on plant diversity.

Our study contributes with new and advancing methods within 
the field of remote sensing, ecology and nature management by 
demonstrating an application for ecological monitoring. Natural 
systems in Denmark, including grasslands, are monitored by the 
Danish national monitoring program (Svendsen, Bijl, Boutrup, & 
Norup, 2005). The promising results of detecting change in bio-
mass related to encroachment of C. scoparius may inspire improv-
ing some of the traditional field-based measurements toward a 
more objective evaluation on the state of natural systems. The 
presented work potentially improves monitoring programs in na-
ture management as it allows to quantify biomass change timely 
and at a fine spatial scale informing managers to implement man-
agement strategies that help sustaining biodiversity during shrub 
encroachment.
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APPENDIX 1

LIDAR POINT CLOUD PROCE SSING AND QUALIT Y 
CONTROL
This document describes the procedure UAS LiDAR point cloud 
processing, quality control, and relative position adjustment. Point 
clouds have been collected from UAS LiDAR flights in Mols Bjerge, 
Denmark, 6 October 2017 and 23 April 2018.

Pre-processing
Prior to these analyses, the point clouds had been post-processed 
and geo-referenced using the software POSPac UAV (v8.2, Dec 

2017, Applanix, Richmond Hill, Ontario, Canada). From three flights in 
each year, 32 strips in 2017 and 43 in 2018 were selected for further 
analysis using the Yellowscan QGIS plugin (YellowScan, 2016). This 
tool basically determines the GPS-time used as delimiter for the flight 
strip data to be further processed. These strips were afterwards re-
adjusted, to make sure that data gathered while the UAS was turning 
were excluded. At last, data were delimited to a scan angle of ±55 
degrees minimizing the amount of noisy points in the dataset.

Quality control
Quality was assessed by creating point density maps to evaluate the 
coverage throughout the area of interest (Figure A1.1a,b). Likewise, 
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the dislocation differences between the overlapping flight strips 
were calculated and visualized on raster maps (Figure A1.1c–f) as 
well as in cross-sections of the point cloud (Figure A1.2). Thickness 
of the ground points layer was evaluated by measuring a cross sec-
tion in a place with a minimum of vegetation (i.e., ground thickness 
should be low) using the point measurement tool in CloudCompare 

(v2.10, GPL software, 2019, retrieved from http://www.cloud​compa​
re.org/).

Relative adjustment of point cloud
It is possible to reduce the differences between overlapping flight 
strips (i.e., relative accuracy) caused by system inaccuracies (e.g., 
GNSS and IMU precision) by applying a least squares matching 

F I G U R E  A 1 . 1   Top figures show maps of point density from Mols 2017 flight (a) and Mols 2018 flight (b). The middle figures presents 
the strip-differences calculated from Mols 2017 (c) and 2018 (d) before the relative georeferencing procedure and bottom after the relative 
georeferencing

(a) (b)

(c) (d)

(e) (f)

http://www.cloudcompare.org/
http://www.cloudcompare.org/
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(LSM) technique to each overlapping strip pair (Ressl et al., 2009). 
These errors are visible as rectangular artifacts in Figure A1.1c–f 
and as differently colored layers in Figure A1.2, each caused by dis-
junct flight strips. The adjusting procedure is performed with the 
GeoRefApprox module in OPALS (v2.3.1, 2018, TU Vienna, Austria, 
http://geo.tuwien.ac.at/opals​/html/Modul​eGeor​efApp​rox.html) by 
keeping one strip as a reference and adjusting the others relative to 
this reference strip. The reference strip was chosen as the closest to 
the median position of all strips, which is the standard setting. After 
the relative geo-referencing, the quality control was performed once 
more and visualized for comparison (Figures A1.1 and A1.2).

Outliers
Outliers in the point cloud, that is, erroneous records of LiDAR returns, 
will affect further processing and the quality of point classification. 
Hence, such outliers have been deleted by attributing each point with 
the number of points within a search radius of 1 m, that is, a sphere 
with a diameter of 2 m around the given point and then applying a 
two-step procedure. First, we deleted all points that had no neighbors 
within the 1 m search radius, which corresponds to single noise points. 
Second, as noise can appear in clumps we also deleted all points with 
average number of neighbors <3 from points within a search radius 
of 3 m, that is, a sphere with a diameter of 6 m around a given point.

F I G U R E  A 1 . 2   Cross-sections from Mols 17 flight (a and c) and Mols 18 flight (b and d) before (top) and after relative georeferencing 
(bottom). Points are colored by the Point ID from each flight strip

(a)

(c)

(b)

(d)

F I G U R E  A 1 . 3   Boxplot showing Z coordinate deviation 
measurements from 2017 and 2019 surveys before and after 
relative point cloud adjustment (gref). Outliers are presented as 
circles, while median and mean values are marked with a line and 
cross, respectively

F I G U R E  A 1 . 4   Boxplot showing XY coordinate deviation 
measurements from 2018 surveys before and after relative point 
cloud adjustment (gref). Median and mean values are marked with a 
line and cross respectively

http://geo.tuwien.ac.at/opals/html/ModuleGeorefApprox.html
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Absolute precision
We measured 12 fencepost-tops with a differential GNSS system 
(Trimble Real-time Kinematic) with centimeter-level precision. The 
measured GNSS points were compared to the closest point rec-
ognized as a fencepost in the point clouds. The deviation in the 
Z coordinate could then be measured for each fencepost, which 
could be distinguished in the point clouds. We found an average 
deviation of 3.2 cm in the 2017 data and 4.8 cm in 2018, which is 
within the accuracy of 5 cm given by the technical specifications 
of the system (YellowScan Surveyor Data Sheet, https://www.
yello​wscan​-lidar.com/produ​cts/surve​yor/). However, the accu-
racy of the absolute position of these control points decreased 
with deviations of 6.5 cm and 8.3 cm, respectively, after the rela-
tive geo-referencing of flight strips, that is, relative adjustment of 
the point clouds (Figure A1.3).

In addition, we measured the systems XY precision in the 2018 
survey by using five ground control markers. Here, we found the de-
viation of 1.1 cm to increase to 4.7 cm after the relative adjustment 
(Figure A1.4).

Using these measurements, we calculated the root mean square 
error (RMSE) and mean absolute difference (MAD), which are 
presented in Table A1.1.

At last, we overlaid the point clouds from each year to visualize 
the consistency of the two surveys (Figure A1.5). It is noticeable 
that the red points (2017) seem a bit higher located for ground 
points most probably a vegetation effect in the leaf-on period. 
Overall, the red and blue points are still in seemingly good aligned/
intermixed.

Concluding remarks
Our findings indicate that the UAS LiDAR system used for this study 
performed with an absolute position error below 10 cm in both, ver-
tical and horizontal directions. The absolute accuracy is lower than 
reported in the technical specification for the LiDAR system; how-
ever, the assessment is based on the position of fencepost which has 
been measured with a GNSS RTK system providing ≤2 cm precision. 
Furthermore, we applied a flight strip adjustment procedure that 
increases the relative accuracy of the point clouds on the expense 
of slightly shifting the point clouds in absolute geographic space. 
Precise alignment of the point clouds was, however, considered 
most important for the overall purpose of classifying shrubs.

R E FE R E N C E S
Ressl, C., Mandlburger, G., & Pfeifer, N. (2009). Investigating adjustment 

of airborne laser scanning strips without usage of GNSS/IMU trajec-
tory data. Laser Scanning 2009, IAPRS, XXXVIII(1), 195–200.

APPENDIX 2

CL A SSIFIC ATION PROCEDURE
This document provides details on the entire classification pro-
cess from preparing and selecting attributes to applying validation 
data for a tree-based classification model. The data were extracted 
from point clouds collected from UAS LiDAR flights in Mols Bjerge, 
Denmark, 6 October 2017 and 23 April 2018.

A training dataset and feature variables to characterize the tar-
geted classes are essential inputs in supervised machine learning 

Vertical deviation Horizontal deviation

2017 2018 2017_adj 2018_adj 2018 2018_adj

RMSE 0.039484 0.060631 0.076016 0.091212 0.014 0.064713

MAD 0.018583 0.025667 0.03175 0.030532 0.00696 0.03888

TA B L E  A 1 . 1   Calculated root mean 
square error (RMSE) and mean absolute 
difference (MAD) from vertical deviation 
measurements in CloudCompare before 
and after relative adjustment (*_adj)

F I G U R E  A 1 . 5   Cross-section 
illustrating the point cloud accuracy 
between flights from Mols 2017 (Red) and 
2018 (Blue). Bars in the lower right show 
the scale bar in white (values in meters), 
while the point cloud orientation is 
presented as blue (Z-axis) and red (X-axis)

2017 point cloud
2018 point cloud

https://www.yellowscan-lidar.com/products/surveyor/
https://www.yellowscan-lidar.com/products/surveyor/
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classification approaches (Waldhauser et al., 2014). The classifica-
tion workflow targets the recognition of Cytisus scoparius shrubs in 
a highly heterogenous and vegetated area of semi-natural grassland. 
The workflow in this appendix is described in a three-step procedure 
of (a) preparing and training the model, (b) computing and evaluating 
input attributes, and (c) final classification results.

Preparing and training the model
Prior to the machine learning process, the full point cloud was di-
vided into ground, low vegetation, high vegetation, and a shrub layer 
of points. The thresholding procedure was based on the normalized 
point height (NormZ), which is calculated by subtracting a 1 × 1 m 
digital terrain model (DTM) derived from the lowest points from the 
height of each point.

All points with NormZ < 0.15 m were assigned as ground temporar-
ily. Before concluding on the final ground classification, we transferred 
points in low densities (<10 pts in spheres with 0.25 m radius) back to 
non-ground, to adjust for wrongly classified points in less penetrable 
1 × 1 m cells. Second, we calculated a mean of NormZ within cylinders 
corresponding to vegetation sizes (low vegetation dimensions: 0.1 m 
radius and 0.3  m height; high vegetation dimensions: 0.25  m radius 
and 5 m height). We then thresholded the points into low vegetation 
(NormZ < 0.3 m) and high vegetation (NormZ > 3.5 m) leaving a shrub 
layer point cloud of medium height vegetation (0.3 m < NormZ < 3.5 m).

Training a tree-based model
Two separate sets of reference data were collected in between the 
two flight surveys. They consist of single differential GNSS measure-
ments of different objects in the area. In the period between refer-
ence data and LiDAR flights no major change to, for example, shrubs 
are expected and following the described method below for genera-
tion of validation points, it should be safe to use the two datasets 
individually and together.

We measured in total 180 shrub individuals from 12 different 
shrub/tree taxa with an RTK GNSS device, to create the dataset for 
training and validation. The reference data gathering was performed 
in random transects throughout the area and spaced approximately 

50–100 m. Along each transect every 100 m, the nearest shrub of 
each species in the area was sampled, where each shrub was meas-
ured as close to the central stem as possible. Additionally, extra 
samples outside the transect paths were made to complement the 
training data for less abundant species. The training dataset was 
used in two different divisions to evaluate possible influence of an 
unbalanced training dataset. The full model “ALL” contains all meas-
ured points in their original separate classes, and the number of indi-
viduals within each class is presented in Figure A2.1. Whereas Model 
“CYTISUS” shows the balance of training data when only the focus 
class C. scoparius was kept by itself, while all other classes were me.

Generating training and validation points
Because Opals modules for attribute assignments are not always 
working with shapefiles the reference data needed to be pre-pro-
cessed for implementation in an Opals data manager file (ODM).

Buffers of 25, 35, and 50  cm were created around the refer-
ence datapoints in QGIS and selected appropriately to cover 
a single object of each class. The 50  cm buffer was used for all 
shrub classes except Calluna vulgaris, which would be decreased 
to 35 cm buffer radius along with the Not Shrub class. The fen-
ceposts themselves are varying in radius between 10 and 20 cm, 
and as they would not always be completely straight, the 25 cm 
buffer was used here.

In QGIS, the buffered reference points were rasterized to 5 × 5 m 
GeoTIFF's for each class displaying the reference cells with 1 and the 
rest of the flight area with 0.

Having the reference information in raster files allows it to 
be stored as attributes in the working ODM with OpalsAddinfo. 
Afterwards, all points overlapping in 2D with the raster cells equal to 
1 could be assigned as validation points in the given class. To ensure 
no classes overlapped in the 2D buffer area, the ground, low vegeta-
tion, and high vegetation classes were assigned separately.

This method of generating validation points in a point cloud en-
sures that no false points are introduced in the training model as the 
actual points are measured with the LiDAR system itself, and the 
reference data used as a guide for assigning the points.

F I G U R E  A 2 . 1   Training and validation 
data for classification with separate 
classes of all shrub species (a) and where 
only the class of interest is kept and all 
other species was pooled into one class 
(b). The number of individuals measured 
within each class is printed on the figure

No of Individuals 65 31 29 24 29 14 14 8 8 8 43322

MODEL: ALL

Cytisus Not Shrub Fenceposts Rubus Rosa Calluna Betula Juniperus

Quercus Prunus Wood Sambucus Malus Pinus Crataegus

No of Individuals 97156

MODEL CYTISUS

Cytisus Not Cytisus

(a)

(b)



20  |     MADSEN et al.

Computing and evaluating input attributes

Input attributes
The tree-based classification procedure available in the OPALS soft-
ware package is applied on a point-based level, meaning that each 
point is classified independently from other points. However, before 
the classification process is initiated, each input attribute was aver-
aged within a cylinder with radius 0.25 m and height ±2.5 m from 
every point (see Figure A2.2). In this way, the “salt and pepper ef-
fect,” known also from image classification (Blaschke, Lang, Lorup, 
Strobl, & Zeil, 2000), is avoided and the scale of the input attributes 
is more likely to correspond to the size of the target shrubs.

During the averaging process, the point-cloud was filtered for 
ground (Normalized Z < 0.15 m), low vegetation (0.15 m > Normalized 
Z < 0.30 m), and high vegetation (Normalized Z > 3.5 m) to exclude 
points without interest to the shrub classification. Yet, the filtered 
points would have contributed as neighboring points in the attribute 
computation before the averaging step and therefore should be con-
sidered when interpreting the results.

Variable selection
This section describes the procedure on which variables have been 
selected to classify shrubs from two different flights (Autumn 2017 
and Spring 2018).

1.	 Initially, several variables were computed with the OPALS 
software and each on three different scales (search radius: 
0.1, 0.25, and 0.5  m). From these, a set of 17 variables were 
selected manually to sort out variables identical on the three 
scales.

2.	 The 17 “Base” variables were all used for the first clas-
sification process to identify their importance in distinguishing 

shrub genera, and in particularly C. scoparius. Two types of models 
were processed, one containing all shrub classes (All) and one 
with C. scoparius alone from each flight, resulting in a total of 4 
models. The importance scores were derived from a “leave-one-
out” procedure, meaning that each classification was processed 
firstly with all variables and afterwards one time without each of 
the variables. In that way, it was possible to calculate the average 
difference in overall accuracy (OA), completeness and correct-
ness when a variable was not included (Figure A2.3). The OA is 
measured as the number of correctly classified points, that is, the 
sum of true positives (TP) and true negatives (TN) divided by the 
total number of validation points. Additionally, “completeness” is 
the ratio between TP and TP + false negatives (FN) and “correct-
ness” is the ratio between TP and TP + false positives (FP; Heipke, 
Mayer, Wiedemann, & Jamet, 1997). Completeness and correct-
ness are equivalent to the terms recall and precision, respectively, 
also referred to in this document (Forman, 2003). For evaluation, 
the accuracy measures were summed without weight and ranked 
from best to worst (Table A2.1).

Furthermore, the variables were evaluated in a correlation matrix 
to avoid autocorrelation. Variable values were extracted from the 
point cloud to a cell-based raster and analyzed with R statistics. For 
extracting the cell values, we chose a search radius of 0.25 m equal 
to the averaging cylinder used for each variable before the classifica-
tion. Furthermore, we only extracted values from the classification 
input points, that is, shrub points. Correlations were made sepa-
rately for each dataset (Mols17 and Mols18), and the variables were 
evaluated for both cases. We allowed only variables with maximum 
pairwise correlation of ρ = .75 keeping the most important variable 
in case of autocorrelation. Variables with importance ranks above 
10 or summed importance values below 0.005 were also rejected 
for further proceeding.

Evaluating shrub signatures
We used the shrub locations to extract raster values for the NormZ 
variable, and each of the seven variables used in the classification 
around a 25 cm buffer. The samples were compared for each year 
of data acquisition with a Wilcoxon signed-rank test to evaluate the 
differences among signatures in the variables for each shrub species 
(Table A2.2). Calluna and Pinus samples were excluded because of 
limited sample sizes. From the reference data, we see that Betula 
shrubs differ more within the selected variables, while Crataegus 
and Juniperus show no signature differences between the years. For 
the Cytisus shrubs, we find a temporal variation in three variables (p-
val < .05), namely PCount_ground, PCount, and PDist. However, the 
NormZ variable used for estimating biomass remains similar for all 
shrubs except Betula. This indicates that our biomass estimations are 
transferable in time. Furthermore, we would expect that the density 
variables from Cytisus shrubs are most affected by temporal change, 
as even small leaves will contribute to an increase if there are many. 
In that sense, we would also have expected more temporal differ-
ence in Crataegus and Quercus shrubs, which have bigger leaves than 
Cytisus. However, it could be explained by temporal variability among 

F I G U R E  A 2 . 2   Sketch of averaging cylinder used for 
homogenizing point cloud attributes to characterize a whole shrub 
or larger parts of it. Central point indicated by blue circle is assigned 
the average attribute value based on all the points contained in the 
cylinder

0.5 m

5 m
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species, where the leaves could have been present or not during both 
flights. Alternatively, the old senescent leaves and additional plant 
litter from other species growing together with the shrubs may affect 
the shrub signatures to be interpreted as more equal.

Our findings regarding shrub signatures reveal many new possi-
bilities in terms of understanding vegetation dynamics but would 
require a much more focused effort for data collection which was 
beyond the scope of the present study.
Final classification results
We classified a total of 59,127,474 points from the 2017 survey 
and 53,886,091 from 2018. Of these, 12.6% and 6.2% were 

classified as shrubs for the 2017 and 2018 data, respectively. 
The rest were generally classified as ground (2017:25.4%; 
2018:35.8%), low vegetation (42.8%; 52.0%), and high veg-
etation (19.3%; 5.9%). From the shrub point cloud, 13 classes 
could be distinguished from the classification model. The class 
distribution results are provided as number of points and as 
percentages (Figure A2.4). For this inventory, each point was 
assigned the class containing the highest probability value.

Classification accuracy assessment
We assessed the accuracy of the final classification input by per-
forming a randomly stratified selection of input training/valida-
tion subsets and running 100 permutations for each classification 

F I G U R E  A 2 . 3   Average values of variable importance from four different models, distinguishing the overall importance (blue), 
completeness (orange), and correctness (grey)

–0.01
0

0.01
0.02
0.03
0.04
0.05
0.06

Average of Importance_overall

Average of Importance_Complete

Average of Importance_Correct

TA B L E  A 2 . 1   Variable importance based on overall accuracy, completeness and correctness scores. The three measures were summed 
without additional weights (sum) and ranked from best to worst (1–17) according to each measure before averaging (rank). Color indicates 
the variables that are kept in the models for the next step (green), and those left out due to lack of importance with a rank threshold ≤ 10 
(Red) or autocorrelation with pairwise cor >.75 (yellow)

Variable
Overall 
accuracy Completeness Correctness Rank Sum

PseudowaveL 0.047808195 0.00902837 0.047616142 1 0.104453

PDist 0.025160961 0.00811807 0.000653427 5.333333 0.033932

PCountL 0.013440036 0.002558371 0.01761165 3.666667 0.03361

Pcount_ground 0.006272326 0.002858146 0.008466972 5 0.017597

NoOfEchos 0.003692739 0.004184393 0.006445916 6 0.014323

NegOpen 0.004667219 2.81416E−05 0.009419098 7 0.014114

Range 0.004524673 −0.005458463 0.014149932 9 0.013216

NormZ 0.006381884 0.003413731 −9.15274E−05 7.333333 0.009704

Planarity 0.001868897 −0.000228497 0.005266631 10 0.006907

PCountM 0.003716534 −0.000250142 0.003000489 10 0.006467

Rank 0.001781419 0.002352647 0.001707153 10 0.005841

PseudowaveS 0.00252669 0.000889567 0.001788535 9.333333 0.005205

Linearity 0.000436458 0.000820137 0.000593598 12.33333 0.00185

PDensL 0.001645286 0.000281219 −0.000591189 12.66667 0.001335

PCountS 0.001047605 −0.002076538 −0.001163251 14.66667 −0.00219

StdDev −0.001450466 −0.005435544 0.004469112 13.33333 −0.00242

PosOpen −0.003849571 −0.003340636 −0.004994585 16.33333 −0.01218



22  |     MADSEN et al.

model (2017 and 2018). Furthermore, each model was evalu-
ated with two different splits of training/validation data, that is, 
90/10 and 70/30. For each permutation, a confusion matrix was 
computed showing true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN), whereof the accuracy met-
rics was derived.

To assess the general classification performance, we calculated 
the overall accuracy (OA) and Kappa coefficient (Kap) (Fielding & 

TA B L E  A 2 . 2   Differences in shrub signatures between 2018 and 2017 flights for each variable and corresponding Wilcoxon p-values 
comparing the samples. p-Value significance codes are illustrated by circles: p-val ≤.05 (black); p-val ≤ .1 (grey); p-val >.1 (white)

ClassName Bet Cra Cyt Jun Mal Pru Que Ros Rub Sam
NegOpen 0.203 0.051 0.037 –0.052 0.110 0.209 –0.155 0.093 0.062 0.177

Wilcoxon P-val 0.000 0.700 0.053 0.660 0.800 0.990 0.170 0.054 1.000 0.100
PCount_ground –349.380 –231.487 –86.837 –129.871 –26.028 –205.587 –192.760 –187.280 –117.462 –267.771

Wilcoxon P-val 0.002 0.400 0.009 0.490 0.200 0.003 0.083 0.001 0.140 0.100
NoOfEchoes –0.023 0.014 0.009 0.022 0.005 0.001 0.041 0.001 –0.008 –0.038

Wilcoxon P-val 0.019 0.400 0.780 0.850 0.800 0.340 0.860 0.340 0.410 0.100
PCount 1.704 –6.202 –3.343 –4.870 –1.050 –2.722 –4.018 –5.119 2.139 –5.437

Wilcoxon P-val 0.680 0.700 0.003 0.490 0.800 0.470 0.320 0.054 0.680 0.200
PDist 0.003 0.005 0.003 0.001 0.006 0.007 –0.003 0.006 –0.001 0.008

Wilcoxon P-val 0.110 0.400 0.004 0.320 0.200 0.610 0.630 0.018 0.740 0.100
PseudoW –0.107 –0.052 –0.003 0.028 –0.162 0.027 0.172 –0.014 –0.010 –0.240

Wilcoxon P-val 0.004 0.700 0.770 0.510 1.000 0.920 0.460 0.440 0.390 0.400
Rank –8.071 –1.494 1.719 0.634 13.389 –6.642 –5.127 1.860 –4.650 –17.613

Wilcoxon P-val 0.007 0.700 0.200 0.460 0.800 0.150 0.460 0.860 0.010 0.100
NormZ –0.454 –0.089 0.045 0.103 –0.430 –0.210 0.419 0.045 –0.164 –0.601

Wilcoxon P-val 0.003 0.700 0.390 0.480 0.800 0.920 0.410 0.680 0.079 0.400

F I G U R E  A 2 . 4   Distribution of classified shrub points from the 2017 survey (green) and 2018 survey (blue) in numbers (top) and 
percentage of total shrub points (bottom)

Cytisus Rubus Betula Rosa Prunus Juniperus Sambucus Quercus Fencepost Not Shrub Crataegus Malus Pinus

Leaf-on 2017 2149253 1212659 929891 945480 554034 382772 282725 265339 228855 227072 115358 82151 57169

Leaf-off 2018 1367183 443762 157417 246474 77488 429764 145360 120262 107609 40483 43191 84554 85379
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Cytisus Rubus Betula Rosa Prunus Juniperus Sambucus Quercus Fencepost Not Shrub Crataegus Malus Pinus

Leaf-on 2017 28.9% 16.3% 12.5% 12.7% 7.5% 5.1% 3.8% 3.6% 3.1% 3.1% 1.6% 1.1% 0.8%

Leaf-off 2018 40.8% 13.3% 4.7% 7.4% 2.3% 12.8% 4.3% 3.6% 3.2% 1.2% 1.3% 2.5% 2.5%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

P
er

ce
nt

ag
e 

of
 s

hr
ub

 p
oi

nt
s S H R U B  C L A S S I F I C A T I O N



     |  23MADSEN et al.

Bell, 1997). The Kappa coefficient compares the observed accuracy 
with the expected accuracy by random chance. For class-wise ac-
curacy, we used precision (P) and recall (R) values to calculate the 
harmonic mean termed “F1” (Forman, 2003). The F1 is calculated by 
the ratio of (2 * recall * precision) and the sum of recall and precision. 
For the definition of OA, recall (i.e., completeness) and precision (i.e., 
correctness) see above. The results from the accuracy assessment 
are presented in Figure A2.5 for OA and Kappa, while the class-wise 
accuracies are shown in Figure A2.6.

Density plots from the 100 permutations of the OA and Kap 
show the highest accuracy for the 2018 dataset (OA mean = 0.95 
and Kap mean  =  0.93), while the different ways of splitting train-
ing/validation subsets are performing equal. The equal performance 
of the 90/10 and 70/30 splits was also found for the class-wise as-
sessment; hence, only results from the 90/10 splits are presented in 
Figure A2.6.
Applied classification model

The final classification models from each year were computed 
after the 100 validation iterations. For each year, the classifica-
tion was used to derive biomass metrics in the project area. The 
resulting accuracy metrics are presented in Table A2.3 and the 
extraction of biomass metrics in Appendix 3. The final model was 
selected after the accuracy assessment of the 100 models but 
with a single similar 90/10 split validation. In a comparison with 
the mean overall accuracy from the 100 models, the model output 
used for the biomass projections differed with +0.2% in 2017 and 
+0.5% in 2018. As the iterative validation process required each 

model to be overwritten each time, it was not possible to pro-
duce a mean or median model output to be applied for biomass 
extraction. Since the model used for biomass projections differed 
only minimal to the average of the 100 permutated models and 
thus shows comparable accuracy, we are confident that no bias has 
been introduced by applying this model.

Merged classification

To assess model transferability, we applied the classifica-
tion process to a merged point cloud containing both flights 
(2017 + 2018). Using the mixed signatures from two different 
seasonal states showed an expected decrease in overall accu-
racy (Table A2.4). The Cytisus class remained high in accuracy 
compared to the other classes, whereof some would be more 
affected by seasonal state (e.g., Betula) or small sample sizes 
(Pinus = 2 individuals).
Additional 2D classification
We performed a traditional 2D classification based on the ras-
terized variables for comparison with the 3D process. The entire 
classification was performed with the “caret” package in R sta-
tistics using the same GNSS observations as the 3D point cloud 
classification and the rasterized variables as input data. For this 
case, we split the reference data in 70% for training and 30% for 
validation. Besides the recursive partitioning algorithm (Rpart), 
we tried using a random forest (RF), gradient boosting machines 
(GBM), and deep neural network (DNN). Each trained model 
was built using the average resampled estimates from a 10-fold 

F I G U R E  A 2 . 5   Density plots showing 
the resulting accuracy distribution from 
100 permutations of the classification 
models, including both the 2017 and 2018 
flights. The accuracy metrics used for the 
general classification are overall accuracy 
and Kappa coefficient, each shown with 
the subsets selected by a 90/10 or 70/30 
split of the training/validation data. 
Below the density plots, corresponding 
tables highlight the calculated mean 
and standard deviation (SD) for each 
distribution
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cross-validation procedure repeated three times. The classifica-
tion predictions on the validation set were assessed with overall 
accuracy and Kappa values (Table A2.4). The resulting overall ac-
curacies did not exceed 50%, and Kappa values were all lower 
than 0.25.

The 2D classification did not achieve similar good results as the 
point-based approach (Table A2.5) and regardless of the classifier 
used, and the overall accuracy does not exceed 50%. The variables 
used are somehow modified for a 3D classification but should still 
be indicative for the different species. The major issue, causing the 
low performance in the 2D approach, is most probably the reduced 
information gained from the training data with one less dimension. 
Therefore, rethinking the creation, assignment, and increasing the 
amount of training data would be necessary to solve this question 
from a 2D perspective.

The classification results presented in Table A2.5 suggested a 
relatively similar performance for the different classifiers. The DNN 
showed the highest overall accuracy for the 2018 (48.2%) data and 
lower for 2017 (39.7%), while it failed to deliver Kappa values above 
0, possibly because of a lack of training data and/or insufficient 
preprocessing of the variables. When evaluating both seasons (2017 
and 2018), the RF algorithm showed higher overall accuracies (45.6% 
for 2017 and 42.6% for 2018), and for 2017, it achieved the highest 
Kappa value (24.7%). The Rpart classifier, similar to the one used for 
3D classification, was not markedly worse than the DNN with over-
all accuracies in 2017 and 2018 of 47.1% and 38.9%, respectively. It 
can be further noticed that all classifiers show higher accuracies in 
the leaf-on period, which is opposite of the 3D classification, that 
performs better with the leaf-off data. This again indicates a need 
for seasonal timing for especially 2D based classifications.

F I G U R E  A 2 . 6   Density plots showing the resulting class-wise accuracy distribution from 100 permutations of the classification models 
for the 2017 (Mols17) and 2018 flights (Mols18). The class-wise accuracies are evaluated on the 90/10 split with the F1 value, based on the 
precision (P) and recall (R) values (Forman, 2003). Below the density plots, corresponding tables highlight the calculated mean and standard 
deviation (SD) for each distribution

TA B L E  A 2 . 3   Accuracy measures from the final models used for calculating biomass from the 2017 and 2018 flights. Accuracies derived 
from the resulting confusion matrix are presented as overall accuracy and Kappa coefficient. The class-wise accuracies are presented as 
precision, recall, and F1 measures

Accuracy assessment—Final model

2017 2018

Overall Accuracy 0.8706 0.956609

Kappa 0.8394 0.935633

Class-wise accuracies

Precision Recall F1

2017 2018 2017 2018 2017 2018

Cytisus 0.894 0.967 0.969 0.985 0.930 0.976

Juniperus 0.895 0.934 0.802 0.955 0.846 0.945

Rubus 0.812 0.941 0.892 0.981 0.850 0.961

Rosa 0.860 0.961 0.697 0.956 0.770 0.958

Quercus 0.823 0.879 0.706 0.884 0.760 0.881

Pinus 0.810 0.955 0.734 0.750 0.770 0.840

Not Shrub 0.884 0.986 0.880 0.839 0.882 0.907

Fencepost 0.923 0.957 0.701 0.941 0.797 0.949

Sambucus 0.937 0.914 0.873 0.914 0.904 0.914

Crataegus 0.915 0.992 0.628 0.967 0.744 0.979

Prunus 0.840 1.000 0.817 0.804 0.828 0.892

Malus 0.888 0.960 0.925 0.829 0.906 0.890

Betula 0.865 0.933 0.833 0.933 0.849 0.933
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APPENDIX 3
E X TR AC TING DATA FOR BIOMA SS E S TIMATION
This document provides information on the digital collection of bi-
omass data recognized through the UAS LiDAR point clouds from 
Mols with drone flights on 6 October 2017 and 23 April 2018. The 
aim was to relate the structural volume variables calculated from 
each individual Cytisus scoparius shrub in the point clouds to 10 har-
vested individuals in various sizes, which have been dried and meas-
ured for actual biomass. The individuals were harvested on 2 May 
2018 and incubated at 60°C for two days before measuring. We then 
compared the measures with the 2018 point cloud.

TA B L E  A 2 . 5   Overall accuracy and Kappa values resulting from 
a 2D raster classification of shrub species. Both datasets from 2017 
and 2018 were classified with four different classifiers (Model 
name)

Model name Overall accuracy Kappa

Rpart17 0.4706 0.1915

Rpart18 0.3889 0.1449

RF17 0.4559 0.2465

RF18 0.4259 0.1838

GBM17 0.3971 0.1761

GBM18 0.3889 0.1518

DNN17 0.3971 0

DNN18 0.4815 0

TA B L E  A 2 . 4   Accuracy measures from the merged classification including the 2017 and 2018 point clouds. Accuracies derived from the 
resulting confusion matrix are presented as overall accuracy and Kappa coefficient. The class-wise accuracies are presented as precision, 
recall, and F1 measures

Accuracy assessment—Final model

70 split 90 split

Overall Accuracy 0.829 0.832

Kappa 0.775 0.780

Class-wise accuracies

Precision Recall F1

70 split 90 split 70 split 90 split 70 split 90 split

Cytisus 0.839 0.843 0.963 0.963 0.963 0.963

Juniperus 0.869 0.873 0.784 0.786 0.784 0.786

Rubus 0.767 0.770 0.838 0.843 0.838 0.843

Rosa 0.768 0.758 0.612 0.625 0.612 0.625

Quercus 0.807 0.817 0.617 0.623 0.617 0.623

Pinus 0.702 0.701 0.204 0.206 0.204 0.206

Not Shrub 0.940 0.932 0.672 0.680 0.672 0.680

Fencepost 0.962 0.963 0.766 0.787 0.766 0.787

Sambucus 0.874 0.877 0.774 0.774 0.774 0.774

Crataegus 0.895 0.910 0.667 0.666 0.667 0.666

Prunus 0.760 0.759 0.642 0.652 0.642 0.652

Malus 0.887 0.911 0.841 0.843 0.841 0.843

Betula 0.813 0.819 0.746 0.755 0.746 0.755

https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1007/978-3-319-08985-0_12
https://doi.org/10.1007/978-3-319-08985-0_12
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Data collection
Before cutting the shrubs, the structure and shape were measured with 
an RTK GNSS device, resulting in small manually created point clouds 
of each 25 points (Cyt3D in Figure A3.1). The Cyt3D point clouds were 
constructed by always measuring top and bottom points first, defined 
as the most upper splitting of branches and the lowest part measurable 
on the main stem. The additional 23 points were measured in various 
heights and distances from the main stem, but always on a branch split 
or directly on the main stem. This was expected to minimize the inclu-
sion of the smaller, and in wind moving branches, which is possibly not 
detectable by the UAS LiDAR system. In Figure A3.1, the alignment of 
the manual constructed point cloud to the LiDAR point cloud is visual-
ized to highlight the precision of the different data sources.

Generating and collecting digital biomass data
As described in the classification document (Appendix 2), we clas-
sified C.  scoparius into separate point clouds (i.e., only containing 

C. scoparius points), wherefrom volume metrics based on normalized 
height could be derived. The normalized height values were each ex-
ported as raster formats in 5 cm pixels to represent volume (Figure 
A3.2). From the 25 manually constructed points, we derived a convex 
hull area with 25 cm buffer around to delimit the area representing 
an individual shrub.

Values from each pixel within the defined areas were then ex-
tracted and summed for the 10 measured shrubs and used for the 
biomass models. Three of the harvested shrubs were not revealed 
in the classified C. scoparius LiDAR points, but two were instead 
found among the generally classified low vegetation class and 
one was classified as Fencepost. These were still included in the 
biomass models, to evaluate how well we estimate biomass from 
LiDAR derived point clouds but were not used in the total biomass 
estimation as it also relies on the ability to classify C. scoparius. The 
measured and extracted values for the 10 individual shrubs are 
presented in Table A3.1.

F I G U R E  A 3 . 1   A Cytisus scoparius individual represented by 
LiDAR derived point clouds from 2017 (Red) and 2018 (Blue) and by 
the manually constructed point cloud Cyt3D (Pink). As a reference, 
the terrain points are visualized as grey points

F I G U R E  A 3 . 2   Raster image of 
normalized height values (blue shades) 
from C. scoparius point cloud in 5 cm 
pixels. Pink dots represents 25 manually 
constructed points (Cyt3D), which were 
used to delimit the convex hull area of an 
individual shrub with 25 cm buffer (pink 
area)

TA B L E  A 3 . 1   Values from the 10 harvested individuals by 
measured dry weight biomass in gram (Weight) and extracted 
volume in m3 from exported raster data (Mean, Max and Range)

Individual Weight Mean Max Range

1 132 0.01196 0.00786 0.00033

2 430.8 0.07370 0.09342 0.03822

3 626.5 0.13262 0.11979 0.02830

4 33.7 0.00550 0.00555 0.00010

5 104.6 0.01923 0.01183 0.00256

6 287.6 0.03568 0.04844 0.02597

7 48.8 0.00131 0.00131 0.00000

8 153.1 0.01802 0.02552 0.01223

9 554.6 0.03844 0.04625 0.01692

10 107.1 0.00313 0.00365 0.00102


