
Monitor, Debug, Troubleshoot Serverless

Avoiding Pitfalls of
Debugging Microservices

Contents

3

4

5

6

7

8

8

11

12

12

13

14

14

15

15

17

17

18

19

20

20

21

21

22

27

Abstract

Debugging Issues in Pre-Production

It has Evolved

Apps Got More Complex

It’s Still Valid

Developement Environments

Alternatives of Devoloping Microservices

A Real-World Example of Remote Developement

What is the downside of Local Debugging?

The Comfort of Local Developement

What is the downside?

The Challenges of Traditional Remote Debugging

When there is remote developement, locl debugging makes
(almost) no sense

Well, neither do remote debugging

What is remote debugging?

Poor Alternatives of Remote Debugging

Using logs

Using APMs out of their purposes

Why do APMs stay short for debugging?

What is Non-intrusive Debugging?

Non-intrusive Debugging with breakpoints

Is Non-intrusive Debugging Sufficient to Debug Distributed Systems?

Connecting Breakpoints asynchronously

Remote Debugging with Thundra Sidekick

Summary

Abstract

Software application development is not all sunshine and roses.
Most of the time, you have to deal with annoying bugs — developers
are increasingly confronting problems, not only to locate where the
problem is, but to find out the nature of the problem in order to
quickly resolve it. In today’s remote world, understanding if a bug is
caused by your code or another team’s code, or if some third party is
slowing down your application, is almost impossible without having
end-to-end observability in your application.

Traditional remote debugging solutions are not effective for today’s
distributed microservice architectures because they are slow,
non-collaborative, and insecure. Additionally, the rich ecosystem of
monitoring and observability tools is focused on resolving production
issues, but they are not optimized for finding and detecting
pre-production bugs. Most software application development teams
apply their own solutions, such as logging for troubleshooting bugs
in pre-production; however, the effectiveness of these methods is
minimal.

So what is the best way to debug remote applications in the
new world’s remote order without sacrificing the comfort of local
development? Efficiency can only be obtained with two basic
competencies attached to the mechanics of debugging: One,
the breakpoints which you set to your code should not stop the
application’s execution, and two, the traces collected from different
nodes of a microservice application in one transaction should be
correlated.

Debugging Issues
in Pre-Production

4AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

When it comes to debugging production issues, we have many
opportunities because we are easily able to understand what’s going
on in production applications because the market is rich with many
solutions, such as APMs or log management and log integration tools.
But when it comes to debugging pre-production issues, it’s hard to find
suitable solutions in the market. For example, when something fails in
the CI or a test fails when you want to push a PR, you are mostly alone
with the CI logs and other logs coming from different streams.

You don't have the comfort and the toolset of troubleshooting
pre-production issues like you do with production issues. Resolving
production issues is not a comfortable and enjoyable task, indeed,
but pre-production debugging is much more underserved.

5AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

During the last couple of years, the tech industry has evolved quickly
and drastically. We first swiftly shifted from good-old PC’s to server
farms, and then (thankfully) the cloud entered the scene. We started
putting our workloads in containers, and then we started building
complex distributed microservices that rely on many external resources.
This technology is still evolving even now with the introduction of
Kubernetes, serverless, and more.

However, with this new technology, it’s now not as easy to debug your
applications. Previously, when you wanted to understand what was
going on with code running on your local PC, all you had to do was
break the processes, stop the execution, and you were able to see
exactly what was happening. But now, you don’t even know where
to have SSH connect to your applications because they run on “some
cloud machine” — and you don’t even know where it’s located.

Most of the time, it’s just not possible to know where your code
is running. It’s remote, it’s encapsulated, and it relies on other
microservices.

TECHNOLOGY HAS EVOLVED

6AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

APPS BECAME MORE COMPLEX

As applications move to the cloud, the complexity of architectures is
increasing. Even if you design the most simple system architecture,
your application still relies on services provided by other cloud
vendors (databases, queues, etc.), services provided by other vendors
(Twilio, Stream, etc.), and services provided by other teams in the
same organization.

Needless to say, it’s crucial to determine the root cause of an issue
ASAP when your customer-facing service is corrupted — and that means
you have to understand your application behavior in all cases. In other
words, developers need to ensure that they use external services in a
resilient way.
When an issue occurs in your application, the initial step of
troubleshooting is to determine which component is causing the
problem. Is it your code or some other service?

Developers need to not only know how to find the problem, but to
uncover what the problem is in order to quickly enact a solution. Bear
in mind that interactions among all the components might be the
cause of reliability problems — not just bugs in the application.

7AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

IT’S STILL VALID

10 years ago, Bram Cohen, the creator of BitTorrent, said that 90% of
coding is debugging and the other 10% is writing bugs. This is still valid
today.

Let’s say, for example, you’re building a project as a microservice
written in Node runtime. But on the other hand, another developer in
your organization is building a separate microservice written in Java
runtime, which is hosted on a different cloud than your microservice
and uses a different orchestration solution. When your application
needs to connect to your colleague’s application to do a specific
job, you need to understand both applications at the same time
(which is almost impossible). Why do you need to understand both
applications? Because when something crashes, or a response takes
more time than expected, you have to understand the root cause of
the issue to debug and troubleshoot the problem — and if the issue
is on the other developer’s end, you need to know how to find and fix
the error so your application isn’t affected.

8AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

Development Environments

ALTERNATIVES TO DEVELOPING MICROSERVICES

In addition to that, debugging code is clearly about fixing issues,
but the typical cycle to resolve an issue in cloud applications is a lot
different than how we used to do it. It consists of several steps, such
as creating a new build, deploying it to the cloud, and verifying the
accuracy of the correction. This can be a very time-consuming and
daunting process.

Theoretically, there are three basic alternative ways that you can
develop microservices in the cloud:

 1. You can either spin up the full system in a local environment.

 2. You can spin up the full system in the cloud.

 3. You can employ multiple methods of spinning up the system
 and create a hybrid alternative.

9AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

Let’s dive a little bit deeper into these methods. The most ancient
(and perhaps the most problematic) way to develop microservices is
by spinning up everything locally. You can develop your applications
using local replicas of cloud resources: There are very useful tools in
the market to replicate any cloud resources in your local environment,
but this comes with some problems, as you may already know.

When you are working with local replicas, you may not be sure if the
local replica reflects the latest version of the cloud service that you
are currently using. So, the problem is that you may lose your focus on
developing your business logic in order to maintain and update all the
local replicas of external apps you have mocked up.

10AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

The other alternative is that you can spin up everything on the cloud.
Using this method, your development environment would be very
realistic, and you can focus more deeply on your code and business
logic.

And the third alternative is that you can spin up everything on the
cloud, but additionally, you can tunnel into cloud services via ports
while you are developing your applications in your local environment.

If your applications are going to be served from the cloud, then
the most reasonable alternative to building your development
environment and creating microservice cloud applications may be
spinning up everything in the cloud and shifting development into
the cloud as much as possible. This method ensures that you are
developing your applications against real cloud resources.

11AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

A REAL-WORLD EXAMPLE OF REMOTE DEVELOPMENT

Below you can see a great example of how remote development can
be applied in real-world applications.

In this article, the Slack engineering team explains how they actually
set up development environments for their engineers. They have
different cloud environments for each and every developer, and every
developer can use the cloud version of the Slack application.

They are essentially using a replica of the identical Slack application,
which is very close to their production version. They are working on
it, starting their branches, making changes, testing their changes,
debugging their code on these remote apps, and taking advantage
of the fully remote development without actually interfering with
each other’s environments.

https://slack.engineering/development-environments-at-slack/

12AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

What Is the Downside of
Local Debugging?

THE COMFORT OF LOCAL DEVELOPMENT

Many developers don’t want to leave the comfort of their local
environment while developing code because it feels like home.
But despite that, many organizations are moving to the cloud and
modernizing their applications at a faster pace than before.

Distributed applications, microservices, containers, and serverless
technologies are taking the place of the old, bulky monolithic
structures. Developers are playing a major role in this shift, and they
are being asked to do more. Microservices help to isolate different
modules and their functions. This isolation provides many benefits,
but it also makes it harder to track bugs and errors.

But despite these advances, debugging techniques haven’t changed
for a long time. We still develop in local environments and utilize
either print debugging or log debugging. In today's cloud-native
world and the wide adoption of cloud technologies and development
environments, debugging techniques need to change to keep up with
the times.

13AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

WHAT IS THE DOWNSIDE?

As a rough assumption, when you have simple code, you spend
at least 40% of your time debugging, refactoring, and modifying
your code. If you’re developing complex architectures with several
components or upgrading an existing application to add more
features on top of it, then it’s very easy to spend up to 90% of your
time debugging, refactoring, and modifying your code.

The process of observing the code you are debugging is very tedious
if you are developing a cloud application locally. Ironically, you have
to start by writing more code to understand your code, because you
don’t know where it’s running or how to connect to it.

You have to add more and more log lines or SDK calls, and then you
have to go through tests.
Then, you have to go through an approval process and deployment
(for example, through CI/CD). Finally, at the end of this long process,
the data you receive is likely to be something completely different
than what you actually need.

You end up “rinsing and repeating” over and over again until you find
something meaningful. In a best-case scenario, each iteration can
take up to 15 minutes; in a worst-case scenario, it can take an hour
or more. As a result, when you have to do a lot of work, you basically
end up wasting a lot of time just to iterate on your own software to
understand its behavior.

14AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

The Challenges of Traditional
Remote Debugging

WITH REMOTE DEVELOPMENT, LOCAL DEBUGGING MAKES (ALMOST) NO SENSE...

With Remote Development, Local Debugging Makes (Almost) No
Sense...
Even if your development environment is local, your test/staging
environment is probably in the cloud if your application lives in the
cloud.

If you want to do local debugging, you basically can’t see anything
of value because all of the application is running on some other
machine. That means it's not actually possible to debug this
application by just pausing, changing the code, and using local
debugging.

In this case, “traditional remote debugging” might make sense for
you — almost all IDEs, and many other tools, offer remote debugging
solutions. The current remote debugging solutions let you debug
an application that isn’t on your machine but is instead running on
another remote machine.

15AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

...BUT NEITHER DOES REMOTE DEBUGGING

The idea of using traditional remote debugging solutions sounds
like a pain reliever, but there are some underlying issues with using
a remote debugger in a production
or even a pre-production environment.

Using traditional remote debuggers is a good way of understanding
the behavior of your remote applications running on the cloud, but
it’s not the best way of debugging today’s modern architectures. It
solves some debugging problems, but at the same time, it creates
other major problems.

WHAT IS REMOTE DEBUGGING?

Simply put, remote debugging allows you to debug someone else's
program while it's running on another machine. This program could
even be your own, but the point is that you are debugging a program
or application that isn’t running on your local machine. You are
making a port connection to some other machine and then stopping,
pausing, and playing that application.

This means that the application should keep a port open for the
debugger application to interfere with its flow. However, this also
means that if there is an open port, it is open to everybody — and this
may create a security hole in your system. With this open port, some
other application other than your debugger can use this port and
create any kind of damage that you can imagine to your application.

16AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

Additionally, remote debugging lets you debug one service at a time.
Let's say you have several microservices working together and one of
your colleagues is connected to one of the microservices. If you want
to connect and debug that application, you simply cannot because
your colleague might have stopped it for debugging purposes.

With all that in mind, that means the “traditional” remote debugging
solutions are not suitable for debugging remote microservices
applications. As another example, let's say you have a microservice
architecture and one of your colleagues deployed the service. You
are sharing the applications with them. When you have shared
applications in development environments, you may be pausing
your colleagues’ applications while you are trying to remotely debug
them.

Additionally, should you have a very distributed architecture, using
a traditional remote debugging solution can cause you to miss
important details since you can only debug one server at a time.
This limitation almost ensures that you won’t be able to see the full
picture of the transactions flowing through your microservices.

Wrapping up: The traditional remote debugging solutions make
you a one-man show because you are just debugging one service
at a time and you are by yourself. You are not able to collaborate
with your colleagues because the breakpoints are intrusive. And you
are most likely breaking security compliances by creating potential
security holes in applications.

17AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

Poor Alternatives of
Remote Debugging

USING LOGS

Since we know that local debugging isn’t very effective, and that
traditional remote debugging solutions aren’t very efficient, that
leaves us with our conundrum. What might be the most feasible
solutions to remotely debug our applications?

Every software development team has its own different methods
of remote debugging. Let’s discuss two of the most common
methodologies.

The first most commonly known and implemented solution is using
logs. Let’s say that your remote applications are generating log
streams that flow between several resources. In an average case,
if you have four services, that means you have four different log
streams. If you also have log streams for your non-compute resources,
then you’ll have at least five or six (or maybe more) log streams in
total. In order to debug such a system, you need to check all of these
log streams and correlate them to be able to understand the state of
a transaction.

There are many open-source alternatives to doing this with tracing,
but the harsh part of these options is that you need to implement
those solutions. For example, when you need to implement a handler
that is suitable to work with open telemetry or open tracing, you also
need to implement the correlation yourself.

AVOIDING PITFALLS OF DEBUGGING MICROSERVICES 18

Additionally, cost is a concern for anybody who keeps logs. Most of
the time when you examine the cost of applications, the biggest
cost item is not compute resources, but is instead the logs and the
database. Costs can really skyrocket when your application starts
to get more and more traffic.

Lastly, when you look at logs to debug the application and don't
understand anything, you will generally need to write some new
logs to make it more understandable. This means that you need to
deploy the application again and again, which creates very long
development cycles — all to find a bug.

With all of these problems, you can see that using logs is a very
time-consuming, very ineffective methodology to debug remote
microservices applications.

USING APMS OUT OF THEIR PURPOSES

The other methodology to debug remote applications in
pre-production is using APMs out of their purposes.

So here’s the scenario: You’re developing an application and you
don't understand what's going on in your remote development
environment. Then you remember you have an APM that you use for
post-production issues. You can use your APM solution to see what's
going on with your application while you're developing it. While this
can work in most cases, it does have some issues.

19AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

WHY DO APMS STAY SHORT FOR DEBUGGING?

First of all, you cannot replace the mechanics of debugging with
APM solutions. Let’s assume that you are examining an event that
happened one week ago, trying to debug the application so you can
understand what went wrong by checking your APM solution. It’s
not possible to pause an event that ran in the past. You also cannot
change the code, go step by step over the code, and etc.

APM’s are not optimized to solve pre-production issues, which
means they aren’t very informative about distinguishing the
requests coming from your customers or requests coming from
your infrastructure. Also, the cost is another component to consider
carefully. If you just want to debug a single application that is
generating a high amount of data, then it’s very likely that your
costs can increase drastically with your APM.

20AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

What Is Non-intrusive
Debugging?

NON-INTRUSIVE DEBUGGING WITH BREAKPOINTS

Non-intrusive debugging with non-breaking breakpoints means that
your application is running in the cloud and you are able to debug it
just like you would for a local application. You can set breakpoints,
but these breakpoints don't necessarily stop the execution of the
application.

This is very useful for production environments, but it can also be
useful in pre-production environments as well. Multiple developers
can work on the same remote application without interfering with
each other while debugging.

The non-intrusive breakpoints are supposed to take snapshots of
variables during execution and let the execution flow. The time spent
taking a snapshot should be less than 20 - 50 microseconds, which
for most applications is considered a negligible amount of overhead.

After you receive the data, you should be able to send it
asynchronously to any type of collector to make your research more
comprehensive.

21AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

Is Non-intrusive Debugging Sufficient
to Debug Distributed Systems?

CONNECTING BREAKPOINTS ASYNCHRONOUSLY

A remote debugger is not completely sufficient if it only uses
non-intrusive breakpoints and takes snapshots of the current state
of the application. There is still a missing component when you
remotely debug distributed microservice architectures.

Let’s assume that you have a distributed application. Service A takes
a request from a customer, processes the request, and writes the
result to a queue. Then service B consumes this result and writes it to
a database.

If you want to debug this flow, you normally put a breakpoint
somewhere in the code of service A and also service B. You now have
two breakpoints, but in different applications. How are you going to
integrate these events of the breakpoints of the same transaction?

Distributed tracing is the solution that can help connect the dots. By
implementing distributed tracing in your system, you can navigate or
step into a breakpoint, or just go to the next breakpoint in the same
transaction — as if you were actually debugging a local application.

22AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

You can build your own distributed tracing using open-source
platforms that have very nice standards of distributed tracing, such
as open telemetry and open tracing. But this can be a costly solution
if you’re only using it for remote debugging purposes. Additionally,
you may need to own, maintain, and solve problems on your own. As
a result, this can actually take your attention away from the problem
that you are trying to solve for your customers.

Remote Debugging with
Thundra Sidekick
Thundra Sidekick was developed by Thundra’s engineering team to
respond to its own requirements. This APM application is developed,
tested, and served in the cloud. Developers at Thundra had tried all
the solutions mentioned above: logs, other APMs, and traditional
remote debugging solutions. None of them were efficient enough to
help developers cope with their development speed.

Eventually, we came up with a solution that combines non-intrusive
breakpoints with distributed tracing. We call these non-intrusive
breakpoints “tracepoints,” because Thundra Sidekick genuinely
connects the snapshots taken from different points in a particular
transaction.

23AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

Thundra Sidekick is a forever-free remote application debugger.
It’s built to serve the developer community and resolve remote
debugging pain. Sidekick is set up very easily and no code
configuration is required. You can debug your Java and Python
applications remotely from Thundra Sidekick’s cloud debugger, or
from your IntelliJ IDEA IDE with the Thundra Sidekick IntelliJ IDEA
Plugin.

To start using Thundra’s cloud debugger, you should import your
code from your code repository first. You can import your projects
from GitHub, GitLab, Bitbucket, and more.

With Thundra Sidekick, it’s very easy to set tracepoints. Simply select
your application and the version of it you want to examine.

24AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

After setting the tracepoint in your application’s code, Sidekick
is ready to take snapshots of the current stage. When the code
execution hits the tracepoint, Thundra Sidekick automatically
captures a tracepoint event, which will appear in the table of the
Thundra Tracepoint tool at the bottom.

25AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

Then, Thundra Sidekick will connect several tracepoints in the same
transaction. When you click “See in Thundra APM” on a snapshot
event, you will be redirected to the Thundra trace map page for that
specific event.

You can easily make small changes and apply hotfixes after taking
some tracepoints and looking at their trace maps where you feel
where the problem might be. You do not need to redeploy the
application to the cloud to see the effect of your hotfix — Thundra
Sidekick seamlessly reloads your application without having to
redeploy. This feature will be ready and available in a short time.
Please contact the Thundra team to be first to know when it is
released.

26AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

Getting started with Thundra is pretty easy: Just add the SDK and
start debugging your remote applications. Thundra's lightweight
instrumentation adds negligible minimal overhead and stays silent
when not working.

Thundra Sidekick is able to work on any infrastructure on any
cloud platform. You can remotely debug your applications while in
pre-production environments or production environments, as well
on AWS Cloud, Google Cloud, Azure Cloud, and more.

27AVOIDING PITFALLS OF DEBUGGING MICROSERVICES

Remote development is the new way to build modern architectures.
But when you want to debug such systems, classic debugging
techniques don’t work as well as they used to. Using logs can be very
time-consuming, costly, and not very effective. Traditional remote
debugging solutions are not secure because you need to keep a port
open to the public, they’re intrusive, and you have to pause the
execution of the program you are debugging.

We implemented a tool with non-intrusive debugging as a solution
to our own remote debugging requirements for our development
and test environment in the cloud. We can easily extract data out
of remote applications without actually pausing them or adding an
overhead onto them with Thundra Sidekick. As another benefit, we
connect the breakpoints of non-intrusive debugging using Thundra’s
distributed tracing engine.

Sidekick is made for developers by developers. It is meant to serve
the developer community and that’s why it’s forever free. You can
use Sidekick on its web application or in your IDE. It’s super easy to
setup and configure. Singup for Sidekick for free, and use it forever
free.

Summary

About Thundra

Thundra is an enterprise SaaS company providing the industry’s first
Application Observability and Security Platform™ for serverless-centric,
container, and virtual machine workloads. Application teams
spanning software development, DevOps/SRE, IT operations, and IT
security rely on Thundra to run fast safely, troubleshooting and
debugging with improved MTTR while ensuring security and
compliance policies are enforced. Thundra is committed to making
the lives of enterprise IT professionals better by reducing the
complexity, costs, and bottlenecks slowing teams down, leveraging
Thundra’s unique technology footprint to replace numerous existing
enterprise tools while improving productivity and efficiency.

Want to see Thundra in
action?

start.thundra.io

Any questions or inquiries?

Contact us at info@thundra.io

© 2021 Thundra, Inc. All Rights Reserved.

@start.thundra.io
mailto:info@thundra.io
https://www.thundra.io/

