

Algorithms for using panels of different sizes for different cancer types - Experience in a molecular pathology laboratory

Prof. Dr. Peter Wild

Potential Conflicts of Interest

Company	Interaction
BMS	Fee for lecturing activities
Novartis	Fee for lecturing activities
MSD	Fee for lecturing activities
Qiagen	Fee for lecturing activities
Molecular Health	Fee for lecturing activities, reimbursement of travel and accommodation costs, reimbursement of participation fees
Eli Liliy	Fee for lecturing activities
Roche	Fee for lecturing activities, reimbursement of participation fees
Sanofi Genzyme	Fee for lecturing activities
Thermo Fisher Scientific	Fee for lecturing activities
Myriad	Fee for lecturing activities
Astra Zeneca	Fee for lecturing activities

Disclaimer

- Thermo Fisher Scientific and its affiliates are not endorsing, recommending, or promoting any use or application of Thermo Fisher Scientific products presented by third parties during this seminar.
- Information and materials presented or provided by third parties are provided as-is and without warranty of any kind, including regarding intellectual property rights and reported results.
- Parties presenting images, text and material represent they have the rights to do so.
- Speaker was provided an honorarium by Thermo Fisher Scientific for this presentation.
- The products from Thermo Fisher Scientific displayed in this presentation are labeled as follows: "For Research Use Only. Not for use in diagnostic procedures."

Outline: Algorithms for using panels of different sizes for different cancer types

- Potential Use of NGS in a Molecular Pathology Lab
- Molecular Profiling
- Resistance Testing

Clinical Research in Molecular Pathology Lab in

Frankfurt

NGS Workflow after DNA Extraction

Target Enrichment:

Enrichment of target DNA for every patient

Library Construction:

Combination of individual samples into a DNA sequencing library

Data Analysis:

Bioinformatics pipeline for data analysis

Barcoding and Normalization:

Depending on the sequencing chemistry, a patient-specific barcode is added.

Products are normalized to ensure equal representation.

Sequencing:

The DNA library is loaded onto a NGS instrument as a pool for sequencing.

Reporting:

Interpretation and Classification of Variants

Macrodissection and DNA/RNA Extraction

Enrichment of the invasive tumour tissue by removal of additional non-tumour tissue captured in the tissue section

Challenge for molecular pathology: many separate databases for variant annotation

- For new or rare gene variants, there is often no associated phenotype.
- Accumulation of variants of unclear significance VUS when using large gene panels

NGS Workflows: Where do you lose the most time?

Fully Automated

	Preanalytics	Sequencing	Bioinformatics	Variant annotation (Cosmic, Clinvar BRCA exch. etc.)	Clinical Interpretation (Pubmed, Clinical trials.gov etc.)	Reporting
Pathology Lab	DNA Extraction etc. inhouse		Inhouse- development	Own research	Own research	Pathology report
NGS Companies		z.B. Illumina, Thermo-Fisher, Qiagen etc				
Interpretation Software			Ion Reporter (Thermo Fisher), MHGuide (Molecular Health) , Pierian DX, QCI Interpret (Qiagen), Sophia Genetics, etc.			

- Molecular testing should be performed in a molecular pathology lab.
- For comprehensive genome analyses, evaluation software is always necessary.
- The software must provide transparent, quality-assured and up-to-date evaluations.

Outline: Algorithms for using panels of different sizes for different cancer types

- Potential Use of NGS in a Molecular Pathology Lab
- Molecular Profiling
- Resistance Testing

Clinical Research in Molecular Pathology Lab in

Frankfurt

Breast Cancer Biomarkers: OCA v3

References

- Interdisziplinäre S3-Leitlinie für die Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms Langversion 4.3 – _Februar 2020 AWMF-Registernummer: 032-045OL.
- https://www.ago-online.de/fileadmin/agoonline/downloads/ leitlinien/kommission_mamma/20 21/PDF_DE/2021D%2005_Prognostische%20und% 20praediktive%20Faktoren.pdf.
- Comprehensive molecular portraits of human breast tumours. The Cancer Genome Atlas Network. Nature volume 490, pages61–70(2012).
- Goldhirsch et al, Annals of Oncology 24: 2206– 2223, 2013 doi:10.1093/annonc/mdt303 (St Gallen Empfehlung).

National Network Genomic Medicine (nNGM) **Lung Cancer**

National network of currently 22 cancer centers, coordinated by University Hospital Cologne

Motto: "test centrally, treat decentrally"

nNGM - Molecular Pathology

- 1. EMA approved markers
- Activating EGFR mutation
- BRAF V600 mutation
- ALK translocation
- ROS1 translocation
- RET translocation
- NTRK1-3 translocation
- PD-L1 status (quantification of membrane positive tumour cells and immune cells)
- 2. Markers related to Clinical research Trials within nNGM

nNGM Panel v2.0

- nNGM Lung Cancer DNA Panel
 v2.0 (26 genes)
 Ion AmpliSeq Panel, Thermo Fisher
- 2. Archer FusionPlex Lung Cancer Panel (ALK, ROS1, RET, MET, NTRK1-3, etc.)

Gen	NCBI	Ensembl	Exone			
ALK	NM_004304.4	ENST00000389048	22, 23, 24, 25			
BRAF	NM_004333.4	ENST00000288602.6	11, 15			
CTNNB1	NM_001904.3	ENSG00000168036	3			
EGFR	NM_005228.3	ENST00000275493.2	18, 19, 20, 21			
ERBB2	NM_004448.2	ENST00000269571.5	8, 19, 20]		
FGFR1	NM_023110.2	ENST00000447712.2	4, 5, 6, 7, 10, 12, 13, 14, 15	1		
FGFR2	NM_000141.4	ENST00000358487.9	6, 7, 8(b), 9, 10, 11, 12, 13, 14, 15, 18]		
FGFR2	NM_022970.3	ENST00000457416.2	8(a)]		2018/2019
FGFR3	NM_000142.4	ENST00000440486.2	3, 6, 7, 9, 10, 12, 14, 16, 18]		
FGFR4	NM_213647.1	ENST00000292408.4	3, 6, 9, 12, 13, 15, 16	1		
IDH1	NM_005896.2	ENST00000345146.2	4	1		
IDH2	NM_002168.2	ENST00000330062.3	4	1		
KRAS	NM_033360.2	ENST00000256078.4	2, 3, 4]		
MAP2K1	NM_002755.3	ENST00000307102.5	2, 3	1		
MET	NM_001127500.2	ENST00000397752.3	14, 16, 17, 18, 19]		
MET	NM_001127500.2	ENST00000397752.3	Intron 13, ersten 100 bp von Intron 14]		
NRAS	NM_002524.4	ENST00000369535.4	2, 3, 4]		
PIK3CA	NM_006218.2	ENST00000263967.3	8, 10, 21]		
PTEN	NM_000314.4	ENST00000371953.3	1, 2, 3, 4, 5, 6, 7, 8]		
ROS1	NM_002944.2	ENST00000368508.3	34, 35, 36, 37, 38, 39, 40, 41]		
TP53	NM_000546.5	ENST00000269305.4	4, 5, 6, 7, 8		J	
NTRK1	NM_002529.3	ENST00000524377.5	13, 14, 15, 16, 17]		Update 2020
NTRK2	NM_006180.3	ENST00000277120.7	14, 15, 16, 17, 18, 19			
NTRK3	NM_001012338.2	ENST00000360948.6	15, 16, 17, 18, 19, 20]		
RET	NM_020975.6	ENST00000355710.8	10, 11, 12, 13, 14, 15, 16, 17, 18]		
HRAS	NM_005343.4, NM_001130442.1	ENST00000311189.8	2, 3, 4			
STK11	NM_000455.4	ENST00000326873.11	1, 2, 3, 4, 5, 6, 7, 8, 9	1		
KEAP1	NM_203500.2	ENST00000171111.10	23456	1		

The list of markers is revised annually at the meetings of the Task Force.

SIP: Somatic DNA Alterations (nNGM 2020)

SIP: RNA Fusions (nNGM 2020)

Gene Alterations SIP vs. other nNGM sites (2020)

Muripedia Database Task Force 3: Standardized Reporting

Example Report: RET-Fusion Positive ADCA of the Lung

Next-Generation Sequencing (DNA nNGM2.0, RNA ARCHER FusionPlex Lung):

- 1. Mutation:
- -> Kein Nachweis einer Mutation, bei ausreichender DNA-Sequenzierqualität.
- 2. Amplifikation:
- Kein Nachweis einer Amplifikation, bei ausreichender DNA-Sequenzierqualität.
- 3. Fusion/Translokation:
- -> Nachweis einer Fusion der Gene KIF5B und RET, Locus: chr10:32311776,chr10:43612032, Read Counts: 9864, Variant ID: 6940 (Atlas of Genetics and Cytogenetics in Oncology and Haematology).
- C. Biologische Bewertung
- -> RET ist ein Protoonkogen und kodiert eine Rezeptor-Thyrosinkinase (PMID: 24561444), die normalerweise in der Embryonalentwicklung exprimiert wird und für die Entwicklung von neuronale und neuroendokrinen Zellen verantwortlich ist (PMID: 8306871). Mutationen in diesem Gen, die zu einer andauernden Enzymaktivität führen, sind mit einer Reihe von Tumoren assoziiert. KIF5B (Kinesin-1 heavy chain) kodiert ein Mikrotubuli-abhängiges Motorprotein, welches beteiligt ist an der Regulation von Zentrosomen und der Kernposition während des Eintritts in die Mitose (PMID: 20386726). Die vorliegende KIF5B-RET Fusion ist als onkogen bekannt (OncoKB). Ca. 1,36 % der Patienten mit Lungenkrebs weisen eine KIF5B-RET Fusion auf (PMID: 31289444). Derzeit laufen vielversprechende klinische Studien mit RET-Inhibitoren bei Patienten mit NSCLC und RET-Fusion: BLU-667-1101 (ARROW), Phase1/2-Studie, BLU-667 (=Pralsetinib, spez. RET-Inhibitor), Einschluss: alle Linien, Studienzentren: Essen, München, Heidelberg, Oldenburg, LOXO-RET-17001, Phase 1/2-Studie, LOXO-292 (Selpercatinib = spez. RET-Inhibitor), Einschluss: nach Standardtherapie, Standorte: Köln, Würzburg, Sofern Zugang zu einer der genannten Studien mit einem neuen spezifischen RET-Inhibitor besteht, sollte eine Studienteilnahme aufgrund der vielversprechenden vorläufigen Daten unabhängig von der Therapielinie dringend erwogen werden. Darüber hinaus existieren für fortgeschrittene Therapielinien Compassionate Use Programme für Loxo-292 (Selpercatinib) und Blu-677 (Pralsetinib). Quelle: Muripedia

Outline: Algorithms for using panels of different sizes for different cancer types

- Potential Use of NGS in a Molecular Pathology Lab
- Molecular Profiling
- Resistance Testing

Clinical Research in Molecular Pathology Lab in

Frankfurt

Resistance mechanisms reported for osimertinib

^{*} Other EGFR tertiary mutations include G719X, G724S AND S768I

Mutations have also been reported

Core Technology: Molecular Barcoding

Molekulares Barcoding / Sensitivität erfordern eine hohe Sequenziertiefe, machen aber die Analyse teuer

Limit of Detection

0.1% LoD
= detecting 1 variant
allele in the background
of 1000 WT

1 ng cfDNA-0.6% LOD 5 ng cfDNA-0.25% LOD 10 ng cfDNA-0.15% LOD 20 ng cfDNA-0.1% LOD 30 ng cfDNA-0.05% LOD

20 ml blood sample in a suitable blood tube (e.g. 2 Stretch tubes from Becton Dickinson), which we will be happy to provide

Turn-Around-Times (DNA & RNA NGS)

2021

90% of NGS reports finished after 10 days

2020

90% of NGS reports finished after 26 days

2019

90% of NGS reports finished after 33 days

Outline: Algorithms for using panels of different sizes for different cancer types

- Potential Use of NGS in a Molecular Pathology Lab
- Molecular Profiling
- Resistance Testing

Clinical Research in Molecular Pathology Lab in

Frankfurt

SIP: Used NGS Panels 2020

Thermo Fisher Genexus System in Frankfurt

Research Use Only. Not for use in diagnostic procedures.

- Short turnaround time (14 hours for a single lane run, 32 samples per run)
- Automated sample purification, library prep, sequencing, and analysis reporting
- E.g. Oncomine Comprehensive Assay v3 Panel

Summary

- The selection of panels of different sizes depends on the timing of testing during the disease as well as on the EMA approval.
- Other influencing factors are the possibility of automation of the workflow and the DNA and RNA quality / quantity of the sample.
- Comprehensive genomic profiling (CGP) using WES / RNA-seq or very large gene panels (including TMB, HRD, MSI) is the future, although not possible in every situation.

Thank you very much for your attention!

