

The Evolving Paradigm of Precision Medicine in Lung Cancer The Oncologist Perspective

Francesco Passiglia

University of Turin

Department of Oncology

francesco.passiglia@unito.it

- ✓ Thermo Fisher Scientific and its affiliates are not endorsing, recommending or promoting any use or application of Thermo Fisher Scientific products by third parties during this seminar.
- ✓ Information and materials presented or provided by third parties as-is and without warranty of any kind, including regarding intellectual property rights and reported results.
- ✓ Parties presenting images, text and material represent they have the right to do so.
- ✓ Speaker is provided honorarium for this presentation.
- ✓ The products from Thermo Fisher Scientific displayed in this presentation are labeled as follows: "For Research Use Only. Not for use in diagnostic procedures."

Precision Medicine in Lung Cancer The Promise is becoming Reality

Precision Medicine in Lung Cancer An Evolving Paradigm

Precision Medicine in Lung Cancer Response Rates with Targeted Therapies

Precision Medicine in Lung Cancer Patients' Survival with Targeted Therapies

Molecular Testing – Predictive Biomarkers «Must Genes» recommended by ESMO Guidelines

Genomic alteration	Frequency	Targeted Therapies
EGFR	12%	Osimertinib
ALK	3-8%	Alectinib
ROS1	1%	Crizotinib
BRAF	2%	Dabrafenib-Trametinib
NTRK	0.5%	Entrectinib

Molecular Testing – Predictive Biomarkers «Expanded Panel» recommended by ESMO Guidelines

Genomic alteration	Frequency	Targeted Therapies
EGFR (classical)	12%	Osimertinib
ALK	3-8%	Alectinib
ROS1	1%	Crizotinib, Entrectinib
BRAF	2%	Dabrafenib-Trametinib
NTRK	0.5%	Entrectinib
RET	2%	Selpercatinib, Pralsetinib
METex14	2%	Capmatinib, Tepotinib
HER2	2%	Trastuzumab DxT, TDM1
KRASG12C	12%	Sotorasib
EGFR (exon20)	1-3%	Amivantamab, Mobocertinib
NRG1	0.5%	Zenocutuzumab

Molecular Testing – Predictive Biomarkers Detection Platforms

Molecular Testing – Predictive Biomarkers NGS Profiling Recommended by ESMO Panel

Gene	Alteration	Prevalence	ESCAT	References
EGFR	Common mutations (<i>Del19, L858R</i>) Acquired <i>T790M</i> exon 20 Uncommon <i>EGFR</i> mutations (<i>G719X</i> in exor 18, <i>L861Q</i> in exon 21, <i>S768I</i> in exon 20) Exon 20 insertions	15% (50%—60% A 60% of <i>EGFR</i> mut n NSCLC 10% 2%	•	Midha A, et al. Am J Cancer Res. 2015 ²⁶ Mok T, et al. J Clin Oncol. 2018 ²⁷ Soria J-C, et al. N Engl J Med. 2018 ²⁸ Ramalingam S, et al. N Engl J Med. 2020 ²⁹ Mok T, et al. N Engl J Med. 2017 ³⁰ Yang JC-H, et al. Lancet Oncol. 2015 ³¹ Cho J, et al. J Thorac Oncol. 2018 ³² Cardona A, et al. Lung Cancer. 2018 ³³ Heymach J, et al. J Thorac Oncol. 2018 ³⁴
ALK	Fusions (mutations as mechanism of resista	nce) 5%	IA	Solomon B, et al. <i>J Clin Oncol</i> . 2018 ³⁵ Soria J-C, et al. <i>Lancet</i> . 2017 ³⁶ Peters S, et al. <i>N Engl J Med</i> . 2017 ³⁷ Zhou C, et al. <i>Ann Oncol</i> . 2018 ³⁸ Camidge D, et al. <i>N Engl J Med</i> . 2018 ³⁹
MET	Mutations ex 14 skipping	3%	IB	Tong J, et al. <i>Clin Cancer Res</i> . 2016 ⁴⁰ Drilon A, et al. <i>Nat Med</i> . 2020 ⁴¹
	Focal amplifications (acquired resistance on EGFR TKI in <i>EGFR</i> -mutant tumours)	3%	IIB	Camidge D, et al. J Clin Oncol. 2018 ⁵²
BRAF ^{V600E}	Mutations	2%	IB	Planchard D, et al. <i>Lancet Oncol</i> . 2016 ⁴² Planchard D, et al. <i>Lancet Oncol</i> . 2017 ⁴³ Planchard D, et al. <i>J Clin Oncol</i> . 2017 ⁴⁴
ROS1	Fusions (mutations as mechanism of resistance)	1%—2%	IB	Shaw A, et al. <i>N Engl J Med</i> . 2014 ⁴⁵ Shaw A, et al. <i>Ann Oncol</i> . 2019 ⁴⁶ Drilon A, et al. <i>Lancet Oncol</i> . 2020 ⁴⁷
NTRK	Fusions	0.23%—3%	IC	Drilon A, et al. <i>N Engl J Med</i> . 2018 ⁴⁸ Hong D, et al. <i>Lancet Oncol</i> . 2020 ⁴⁹ Doebele RC, et al. <i>Lancet Oncol</i> . 2020 ⁵⁰
RET	Fusions	1%-2%	IC	Drilon A, et. <i>J Thorac Oncol</i> . 2019 ⁵¹
KRAS ^{G12C}	Mutations	12%	IIB	Barlesi F, et al. <i>Lancet</i> . 2016 ⁵³ Fakih M, et al. <i>J Clin Oncol</i> . 2019 ⁵⁴
ERBB2	Hotspot mutations Amplifications	2%—5%	IIB	Hyman D, et al. <i>Nature</i> . 2018 ⁵⁵ Wang Y, et al. <i>Ann Oncol</i> . 2018 ⁵⁶ Tsurutani J, et al. <i>J Thorac Oncol</i> . 2018 ⁵⁷
BRCA 1/2	Mutations	1.2%	IIIA	Balasubramaniam S, et al. Clin Cancer Res. 2017 ⁶³
PIK3CA	Hotspot mutations	1.2%—7%	IIIA	Cancer Genome Atlas Research Network. <i>Nature</i> . 2014 ⁶⁰ Vansteenkiste J, et al. <i>J Thorac Oncol</i> . 2015 ⁶²
NRG1	Fusions	1.7%	IIIB	Duruisseaux M, et al. J Clin Oncol. 2019 ⁵⁹
NTRK	Fusions C).23%—3% I	С	Drilon A, et al. <i>N Engl J Med.</i> 2018 ⁴⁸ Hong D, et al. <i>Lancet Oncol.</i> 2020 ⁴⁹ Doebele RC, et al. <i>Lancet Oncol.</i> 2020 ⁵⁰
PIK3CA	Hotspot mutations	16% I	IIA	Cancer Genome Atlas Research Network, <i>Nature</i> . 2012 ⁶¹ Vansteenkiste J. et al. <i>J Thorac Oncol</i> . 2015 ⁶²

Female, 45 years old, never smoker, stage IVB

March 12th 2021

Thoracentesis: 2500 cc blood stained pleural effusion

<u>Histological evaluation</u>: lung adenocarcinoma cells

RT-PCR Molecular analyses: EGFR/BRAF wild-type

FISH: ROS1 not rearranged

IHC: ALK Not Expressed

IHC: PD-L1 TPS 65%

→ 1st line immunotherapy (pembrolizumab) recommended

Expanded biomarker panel by NGS profiling

March 18th 2021

Second opinion at S.Luigi Hospital (Orbassano)

NGS analysis by Ion Torrent Platform (Oncomine Dx Target Test)

EGFR/BRAF/KRAS/ERBB2: wild-type

ALK/ROS1: not rearranged

METex14skipping: negative

RET-CCDC6 rearrangement

→ Randomized clinical trials (RET-TKI versus CT +/- IO)

RET-TKI under clinical development

RET-TKI activity in RET-CCDC6 rearranged NSCLC patient

Baseline March 2021

CT-scan Report after 3 months

- Partial regression of the voluminous lesion in the right perihilar site
- Almost complete regression of the multiple <u>lung bilateral</u> <u>parenchymal nodules</u>
- Complete regression of the cerebral nodules
- Partial response of the multiple bilobular <u>hepatic</u> <u>hypodense lesions</u>

After 3 months June 2021

Molecular Testing – Predictive Biomarkers Disparities across European Countries

Table 1. Availability of lung cancer molecular tests (November 2019).

Reimbursed

Not reimbursed

Contradictory data

With reimbursement, we refer to tests that are available for all patients, and therefore are not self-paid by the patient

Molecular Testing – Predictive Biomarkers Challenges and Barriers across European Countries

Molecular Testing – Predictive Biomarkers Italian Scenario in 2021

Molecular Testing - Predictive Biomarkers US Scenario in 2021

Test types	Overall N=3474	Nonsquamous N=2820
EGFR	70%	76%
ALK	70%	76%
ROS1	68%	73%
BRAF	55%	59%
PD-L1	83%	83%
Any biomarker	90%	91%
All 5 biomarker tests	46%	49%
NGS	37%	39%

Patients with non-squamous NSCLC							
	Non-squamous N=10,333	White N=6,705	Black/AA N=922	P-value, White vs Black/AA			
Ever tested	8,786 (85.0%)	5,699 (85.0%)	764 (82.9%)	0.09			
Tested prior to first line therapy		4,881 (72.8%)	662 (71.8%)	0.52			
Ever NGS tested	5,494 (53.2%)	3,668 (54.7%)	404 (43.8%)	<0.0001			
NGS tested prior to first line therapy		2,452 (36.6%)	274 (29.7%)	<0.0001			

#ASCO21 Equity: Every Patient. Every Day. Everywhere.

Biomarker testing in Lung Cancer

- ✓ Represents the standard of care
- ✓ Assists in identifying therapeutic options for our patients
- √ Important eligibility criteria for clinical trials

Are we meeting the mark??

EPROPA

European Program for ROutine testing of Patients with Advanced lung cancer

Increasing Patient Access to NGS-molecular screening

Increasing Patient Access to biomarker-driven clinical trials

EPROPA *Project and Workflow*

All patients with histological diagnosis of NSCLC; stage IIIB/C-IV (8th TNM); FFPE tissue sample availability for molecular analysis may participate

- FFPE DNA/RNA extraction, quantifications and quality control;
- NGS analysis by Ion Torrent Platform (161 genes) (Thermo Fisher Scientific);
- Molecular data check within genomic database (Clinvar NCBI NIH, COSMIC, *Polyphen*);
- MTB Discussion and Clinical Trials Identification (Clinicaltrialgov.It);
- Logistic Support to the patients during the diagnostic/therapeutic process

EPROPA *The Website Platform*

https://www.epropa.eu/

Female, 65 years old, never smoker, stage IVA

February 22th 2021

FNA left lung lesion

<u>Histological evaluation</u>: lung mucinous adenocarcinoma cells

NGS analysis by Ion Torrent Platform (Oncomine Dx Target Test - Thermo Fisher Scientific):

EGFR/BRAF/KRAS/ERBB2: wild-type

ALK/ROS1/RET: not rearranged

METex14skipping: negative

PD-L1 IHC: negative

→ 1st line chemo-immunotherapy recommended

Chemo-Immunotehrapy activity in WT NSCLC patient

Baseline Feb 2021

CT-scan Report after 3 months

- **SD** of the <u>voluminous lesion in</u> <u>the left inferior lobe</u>
- Occurrence of left pleural effusion

 Increase of the multiple <u>lung</u> <u>bilateral parenchymal nodules</u>

After 3 months May 2021

Expanded biomarker panel by ERPOPA NGS testing

May 11th 2021

NGS analysis by Ion Torrent Platform (161 genes) (Oncomine Complrehensive Panel v3 - Thermo Fisher Scientific):

NRG1-SCDA rearrangement

→ Phase I-II clinical trial testing Monoclonal Antibody in NRG1+ solid tumors (Milan)

NRG1 Inhibitor (MoAb) activity in NRG1-rearranged NSCLC patient

Baseline May 2021

CT-scan Report after 3 months

- Partial regression of the voluminous lesion in the left inferior lobe
- Regression of left pleural effusion

Partial regression of the multiple <u>lung bilateral</u> <u>parenchymal nodules</u>

After 3 months August 2021

r

The Evolving Paradigm of Precision Medicine in Lung Cancer

The oncologist perspective

- Precision medicine is the way forward
- > Rapidly increasing of predictive biomarkers and targeted therapies
- Molecular testing is standard of care
- Aiming to broad biomarker testing by NGS analysis upfront
- Overcoming barriers to NGS molecular testing
- > Reducing patients' access disparities to biomarker testing and cancer care

"Providing equitable care for our patients is our North Star, and it requires constant attention and reinforcement..."

Dr. Lori J. Pierce, MD, FASCO, FASTRO

Polaris, image: Wikisky

... and PARTNERSHIPS between academic centers, community centers, patients, patient advocates, pharma / biotech, payers, and regulatory bodies. A team approach to show solidarity towards generating solutions, advancing knowledge, attaining equity for all.

