

The use of Genexus and OPA as fast and sensitive NGS solution for solid tumour molecular characterization

Hana Lango Allen East GLH Scientific Director

Hongxiang Liu East GLH Lead Scientist for Molecular Pathology Genomics

Manchester Pathology, 7th July 2021

Thermo Fisher Scientific and its affiliates are not endorsing, recommending or promoting any use or application of Thermo Fisher Scientific products by third parties during this seminar.

Information and materials presented or provided by third parties as-is and without warranty of any kind, including regarding intellectual property rights and reported results.

Parties presenting images, text and material represent they have the right to do so.

Speaker is provided honorarium for this presentation.

Introduction to NHS East GLH

- One of 7 Genomic Laboratory Hubs (GLHs) set up to deliver consistent and equitable national Genomic Medicine Service
- Covers 9.8m population
- 32 Trusts, 23 hospitals, 19 pathology groups
- Led by CUH, working with labs in UHL and NUH
- Undergoing substantial laboratory and workforce transformation...
- ... to implement high-throughput molecular assays needed to deliver National Genomic Test Directory

Implementation of cancer test directory East Genomic Laboratory Hub largely driven by NGS assays

NHS

East GLH solid tumour molecular testing pathway

NGS panel for hotspot cancer gene testing – OPA on Genexus

East Genomic Laboratory Hub

2021

2005

Genexus + Oncomine Precision Assay

	D	NA hotspo	ots		CN	Vs	Inter-gene	tic fusions	Intra-genetic fusions
AKT1	CHEK2	FGFR3	KIT	NTRK3	ALK	FGFR1	ALK	NTRK1	AR
AKT2	CTNNB1	FGFR4	KRAS	PDGFRA	AR	FGFR2	BRAF	NTRK2	EGFR
AKT3	EGFR	FLT3	MAP2K1	PIK3CA	CD274	FGFR3	ESR1	NTRK3	MET
ALK	ERBB2	GNA11	MAP2K2	PTEN	CDKN2A	KRAS	FGFR1	NUTM1	
AR	ERBB3	GNAQ	MET	RAF1	EGFR	MET	FGFR2	RET	
ARAF	ERBB4	GNAS	MTOR	RET	ERBB2	PIK3CA	FGFR3	ROS1	
BRAF	ESR1	HRAS	NRAS	ROS1	ERBB3	PTEN	MET	RSPO2	
CDK4	FGFR1	IDH1	NTRK1	SMO			NRG1	RSPO3	
CDKN2A	FGFR2	IDH2	NTRK2	TP53					

Figure 2. Oncomine Precision Assay gene list.

OPA features

East Genomic Laboratory Hub

Novel Fusion Detection Using Exon Tiling Imbalance

Determines if there is an "imbalanced" expression between the 5' and 3' ends of select fusion driver genes indicates a fusion for that gene (so will detect 'novel' fusions).

What is included?

- Graphical representation of an "imbalance" (blue line = positive sample vs. grey lines of normal)
- Estimated exonic breakpoint (red dotted line)
- Visual representation of the kinase domain
- Imbalance score, and P-value (statistical confidence)

Ion AmpliSeq HD technology

- Our ultrahigh sensitivity solution for translational and clinical researchers who need customization
 - Single configuration Made-to-Order
 - Ultra-high sensitivity As low as 0.1% LOD¹
 - Low sample input as little as 1 ng DNA or 1ng FFPE RNA
 - (≥2.8 ng/µL).

East GLH OPA Verification Overview

Verification of OPA for Fusion Detection

100% sensitivity for 17 OPA- targetable fusions in commercial FFPE controls

Fusion driver gene	Fusion expected	Fusion detected	Concordant	Sample source
ALK	EML4-ALK	EML4(13) - ALK(20)	Yes	SeraCare*
	EML4-ALK	EML4(13) - ALK(20)	Yes	Horizon#
BRAF	SLC45A3-BRAF	SLC45A3(1) - BRAF(8)	Yes	SeraCare
FGFR3	FGFR3-BAIAP2L1	FGFR3(17) - BAIAP2L1(2)	Yes	SeraCare
	FGFR3-TACC3	FGFR3(17) - TACC3(10/11)	Yes	SeraCare
MET	MET ex 14 Skipping	MET(13) - MET(15)	Yes	SeraCare
NTRK1	LMNA-NTRK1	LMNA(2) - NTRK1(11)	Yes	SeraCare
	TFG-NTRK1	TFG(5) - NTRK1(10)	Yes	SeraCare
	TPM3-NTRK1	TPM3(7) - NTRK1(10)	Yes	SeraCare
NTRK3	ETV6-NTRK3	ETV6(5) - NTRK3(15)	Yes	SeraCare
RET	CCDC6-RET	CCDC6(1) - RET(12)	Yes	SeraCare
	CCDC6-RET	CCDC6(1) - RET(12)	Yes	Horizon
	KIF5B-RET	KIF5B(24) - RET(11)	Yes	SeraCare
	NCOA4-RET	NCOA4(7) - RET(12)	Yes	SeraCare
ROS1	D74-ROS1	CD74(6) - ROS1(34)	Yes	SeraCare
	SLC34A2-ROS1	SLC34A2(4) - ROS1(34)	Yes	SeraCare
	SLC34A2-ROS1	SLC34A2(4) - ROS1(32/34)	Yes	Horizon

*. Seraseq® FFPE Tumor Fusion RNA v4; #. Horizon ALK-RET-ROS1 Fusion FFPE RNA Ref Standard

Verification of OPA for Fusion Detection

Genexus Ion Torrent						
Results / OPA_0018_210601 ▼ / OPA Fusions w2.6.0 ▼ / MB0119	9Q_2 ▼					
MB0119Q_2 Summary QC ✓ Variants Plug Fusions Filter Oncomine Extended (5.14) ♦ (1 of 10)	igins brea	Fusion ir kpoint betw	nbalance ca veen introns partner un	all: ALK, 5 15-20, known,		
User Classification 🗡 Locus Y Oncomine Variant C	Class Y Oncomine Gene Class Y	Genes (Exons) 🗡	Read Counts 🗡	Туре 🔻		
Classification Classification Classification	nce Gain-of-Function	ALK	NA	RNAExonTiles		

100% sensitivity in 5 OPA- targetable genes for copy number variant detection in commercial and clinical FFPE samples

	a			Run 1		un 2				
Gene	Copy No. expected	Control method	Copy No. detected	Copy No. ratio	Copy No. detected	Copy No. ratio	Concordant	Sample type		
EGFR	5.6	Commercial standard	5.9	3.0	6.2	3.1	Yes	Seraseq™1 (Cat. 0710-04	L4)
MET	5.7	Commercial standard	7.3	3.6	7.6	3.8	Yes	Seraseq™1 (Cat. 0710-042	L4)
AR	1.0	Commercial standard	0.9	0.5	0.9	0.5	Yes	Seraseq™1 (Cat. 0710-04	L4)
ERBB2	8.5	Commercial standard	8.6	4.3	8.9	4.5	Yes	Seraseq™2 (Cat. 0710-041	2)
FGFR3	8.3	Commercial standard	6.4	3.2	6.0	3.0	Yes	Seraseq™2 (Cat. 0710-041	2)
ERBB2		IHC 3+	10.0	5.0			Yes	Breast cance	er	
ERBB2		IHC 3+	9.6	4.8			Yes	Breast cance	er	
ERBB2		IHC 3+	4.7	2.3			Yes	Breast cance	er	
ERBB2		IHC 3+	9.6	4.8			Yes	Breast cance	er	
All targets			CNV not detected	N/A			Yes	Tonsil		
Genexus	Genexus Ion Torrent Samples						nples Rui			
Results / OPA	_210622_023_M	Z▼ / OPA DNA_GLH210406▼ / seras	eq_breast_CNV V							
seraseq_brea	ast_CNV	Summary QC 🗸 Variants	Plugins							
SNVs/Indels	SNVs/Indels CNVs Filter OPA_DNA_WL210513 Iteration									
User Classifica	ation Y L	ocus 🝸 Oncomine Variant C	ass 🕈 Onco	mine Gene Class 📍	Gene 🕈	Copy Number	CNV Confidence 🔻	Variant ID 🔻	CNV Ratio 🔻	P-Value 🕇
Classification	• c	hr17:37845047 Amplification	Gain-	of-Function	ERBB2	8.9	5%:7.97, 95%:9.94	ERBB2	4.45	0
Classification	• c	hr4:1800932 Amplification	Gain-	of-Function	FGFR3	5.97	5%:5.24, 95%:6.8	FGFR3	2.98	0

Solid Tumour Tissue Pathway

- Clinical research samples are hugely variable.
 - Vast majority are FFPE tissue blocks, some are unstained paraffin sections. Tissue is often cut out and stained slides are the only materials available.
 - Tissues can be surgical resections, needle biopsies or fine needle aspirate (FNA) so size ranges from megablocks, small cores to cell clot with few cells.
 - Tissue can be freshly fixed, fixed following decalcification (if bone) or archival materials stored for years or even decades.
 - Tissue can be necrotic, haemorrhagic and pigmented (melanoma).

All these affect quality and quantity of nucleic acids extracted.

Tissues vary in size and amount of tumour cells

Resection specimen with lung adenocarcinoma

Needle biopsy with lung adenocarcinoma

FNA with lung adenocarcinoma

A pleural cytology sample with metastatic NSCLC

Difficult to distinguish mesothelial cells from tumour cells on morphology

Rectal biopsies with invasive CRC in adenoma background

Identify correct cell population for analysis Dissect only invasive tumour for testing

Sample processing considerations

- Sample should always be morphologically assessed prior to testing.
 - Is tumour present? Are there enough tumour cells?
 - Is micro- or macro-dissection required to enrich tumour cells to the minimum level required by the assay?

Need to work closely with pathologists

Audit of 1st Three-Month DNA Sequencing Results

A total of 196 samples sequenced by 22/06/21 with 2 failed and 194 successful, a success rate of 99%

Sample type (n=1	94)	
PB/BMA	4	2.1%
FFPE	190	97.9%

Type of FFPE samp	ole (n=1	90)
Resection	84	44.2%
Small biopsy	75	39.5%
Cytology	26	13.7%
Unspecified	5	2.6%

FFPE tissue processing (n=190)				
Non-dissection	11	5.8%		
Macro-dissection	55	28.9%		
Micro-dissection	124	65.3%		

Tumour cell content in dissected sample (n=190)				
>20% but <30%	3	1.6%		
>30%%	187	98.4%		

umour sample type (n=194)					
	Lung cancer	89	45.9%		
	Colorectal cancer	39	20.1%		
	Melanoma	19	9.8%		
	Brain tumour	15	7.7%		
	GIST	11	5.7%		
	Haematological malignancy	10	5.2%		
	Sarcoma	6	3.1%		
	Thyroid cancer	1	0.5%		
	Hepatocellualr adenoma	1	0.5%		
	Undifferentiated	3	1.5%		

DNA extraction		
Crude proteinase K di	gest 181	95%
Purified	9	5%

DNA	A quantity		
	Not quantifiable	3	(1.6%)
	<10ng	11	(5.8%, 3 < 5ng)
	>10ng	176	(92.6%)

Anatomic site of	samp	les (n=190)
Lung	52	27.4%
Lymph node	35	18.4%
Large bowel	33	17.4%
Brain	14	7.4%
Skin	9	4.7%
Stomach	7	3.7%
Pleural	5	2.6%
Liver	4	2.1%
Bone	4	2.1%
Others	27	14.2%

Case example 1

Case example 2

Case example 3

- Our verification results and initial clinical experience showed OPA on Genexus to be highly successful in solid cancer testing for often challenging tissue samples
- Genexus platform is a fully automated system, integrating library preparation, templating, sequencing, data analysis and reporting into a single-day, single-instrument run and on-instrument software.
- OPA covers most relevant targets for SNV, CNV and fusions and enable accurate detection of key biomarkers for prediction of response to targeted therapies, and for disease diagnosis and patient prognostication in multiple cancers
- Works well with FFPE tissue and all types of routine tumour samples, with 99% success rate
- Requires Low DNA input (1-10ng, crude PK digest, H&E or IHC stained)
- Has high sensitivity (5% VAF), >2000X coverage in average
- Is capable of delivering rapid, high-throughput and highly standardised testing service
- Is suitable for testing of suboptimal samples triaged into in the salvage pathway

Acknowledgements

All staff in East GLH Solid Cancer Team

- NGS and Technical Team: Dr Wanhua Lu, Dr Saskia Neuert, Jennifer Jones, Maria ZafraPinto, Georgina Corfield
- Sample Reception and Booking in Team
- Dissection Team: Thomas Roberts, Jennifer Jones
- Reporting Scientists and Molecular Pathologists
- East GLH Quality Team and Senior Management

Thermo Fisher Scientific for training, education, and ongoing support for Genexus assays