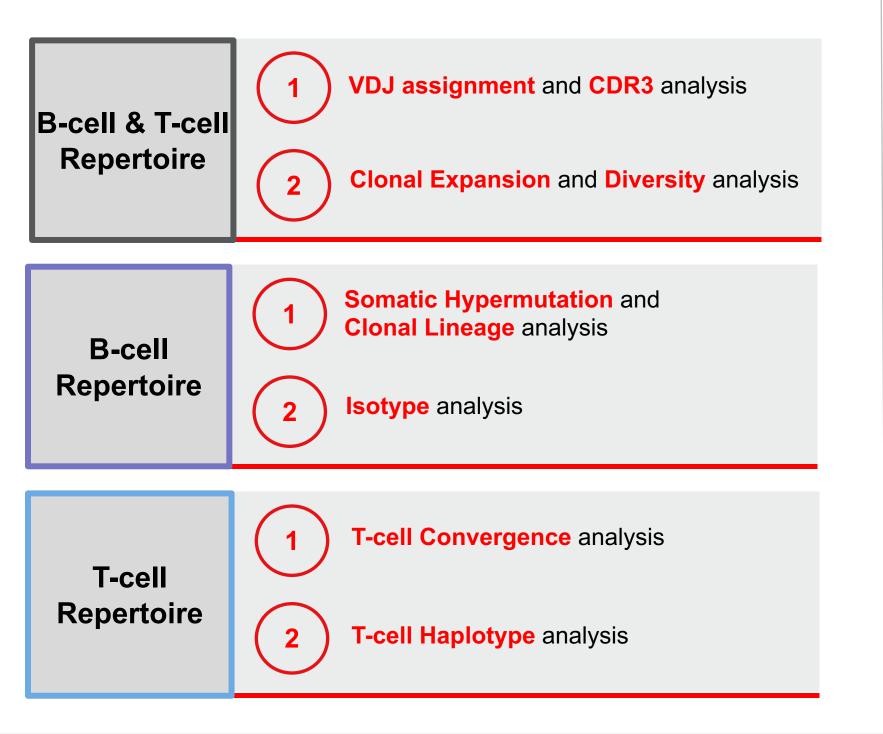
iontorrent

Fully Automated Workflows Quantify and Report Key T-Cell and B-Cell Receptor Biomarkers Relevant to Immuno-Oncology and Heme-Oncology Research

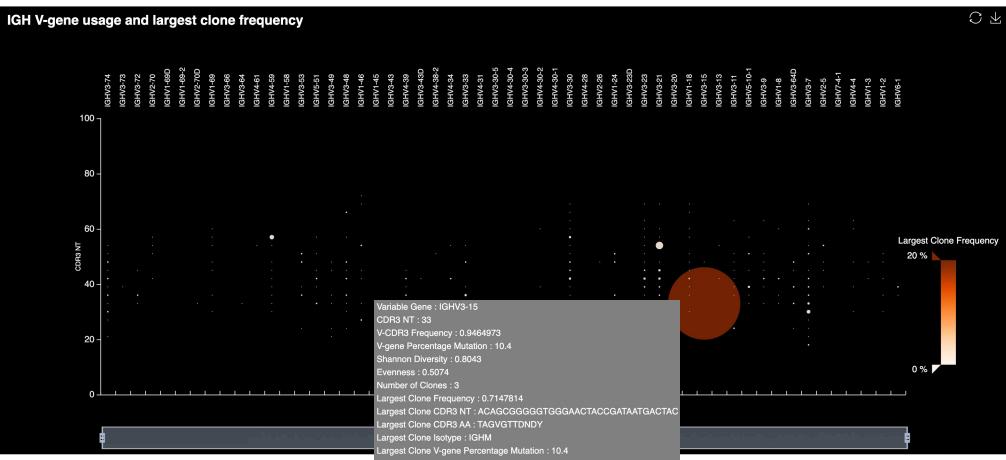

Shrutii Sarda¹, Geoffrey M. Lowman², Michelle Toro², Loni Pickle², Timothy Looney¹, Fiona Hyland¹ [1] Clinical Sequencing Division, Thermo Fisher Scientific, South San Francisco, CA 94080, USA [2] Clinical Sequencing Division, Thermo Fisher Scientific, Carlsbad, CA 92008, USA

INTRODUCTION

T-cell and B-cell repertoire analysis is used in oncology research, to understand the etiology of complex disease phenotypes, for the identification of biomarkers predictive of disease burden, outcome, and response to treatment, and for research in diagnosis and recurrence monitoring. Key predictors include secondary and tertiary repertoire features not reported by existing sequencing software solutions. For example, due to ongoing somatic hypermutation in mature B-cell receptors, the underlying sequence of a given clone can accumulate base differences and appear as several distinct clones with smaller frequencies, thereby hampering the ability of analysis software to detect its presence as a single dominant clone with the highest frequency. This has particularly detrimental implications for research in disorders such as follicular lymphoma and may require clonal lineage analysis for proper mitigation.

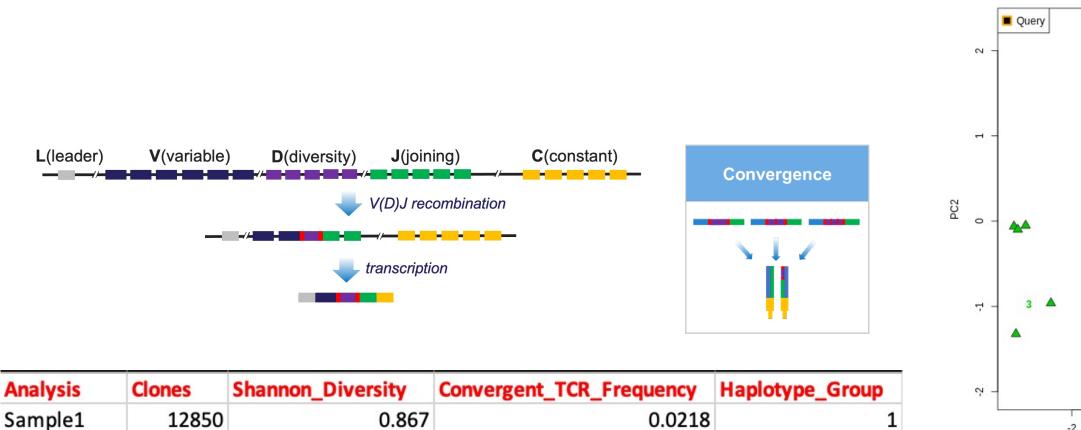
downstream analytics of biomarker То the aid identification and the study of complex disease, we developed fully automated analysis solutions that directly compute and report several key features (clonal lineage, amongst several others described below) pertinent to this area of research.

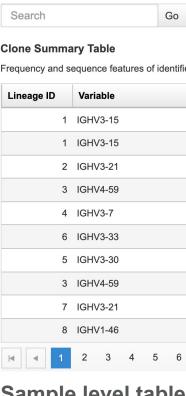
KEY ANALYSIS FEATURES


For Research Use Only. Not for use in diagnostic procedures

Summary lineages a summary Lineage

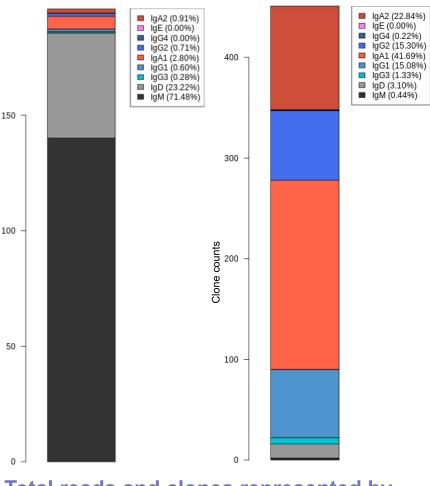
Sample Metrics table listing (i) T-cell convergence level (frequencies of TCR clones derived from different nucleotide sequences but sharing the same amino acid sequence) and (ii) T-cell haplotype assignment based on V-gene allele genotyping and clustering of the sample


RESULTS

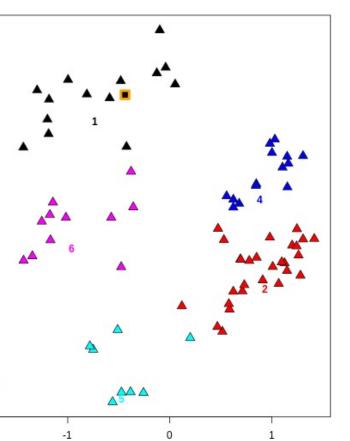


Spectra-typing plot simultaneously assesses sample clone frequencies as a function of V-gene usage and CDR3 length combinations

Linea	age Summary	•							
irch		Go							
ge Sum	mary Table)							
s are ide			0 1	0				, , , , , , , , , , , , , , , , , , , ,	es owing to somatic hypermutation a % homology). The lineage ID columr
age ID	Variable	Top CDR3AA	Lineage Frequency	Number of Clones	Isotypes	Minimum V-gene SHM	Maximum V-gene SHM	Minimum Clone Frequency	Maximum Clone Frequency
1	IGHV3-15	TAGVGTTDNDY	0.9464003	2	IGHD;IGHM	0.104	0.104	0.231619	0.7147814
2	IGHV3-21	ARDLDSYGSLTYY	0.0096995	1	IGHA1	0.041	0.041	0.0096995	0.0096995
3	IGHV4-59	ARIGATRPHPTYS	0.0029746	3	IGHA1;IGHG3	0.094	0.155	0.0000102	0.0024185
4	IGHV3-7	AKEEWWRLDY	0.0022705	1	IGHG2	0.092	0.092	0.0022705	0.0022705
5	IGHV3-30	ARVPYHGSGIDYY	0.0008674	3	IGHA1	0.04	0.066	0.0000969	0.0006021
6	IGHV3-33	VTTQYGPGSFGS	0.0006888	1	IGHA2	0.133	0.133	0.0006888	0.0006888
7	IGHV3-21	ASGTGVTVVRGLGV	0.0005	1	IGHG1	0.106	0.106	0.0005	0.0005
8	IGHV1-46	ARPRRYKYGNYY	0.0004847	1	IGHA1	0.126	0.126	0.0004847	0.0004847
9	IGHV5-51	AYSRLGATLDY	0.0004745	1	IGHA1	0.056	0.056	0.0004745	0.0004745
10	IGHV3-48	ARCRYFGSGSYH	0.0004235	1	IGHG1	0.097	0.097	0.0004235	0.0004235
∢ 1	2 3	4 5 6 7 8	9 10 🕨	► 10 ▼ item	is per page				


Lineage Summary table listing B-cell lineage groupings (clones related by descent, w/ differing SHM rates) of all identified clonal populations in the sample

Sample Results


Views: Clone Summary

Total reads and clones represented by **B-cell Isotype**

D							Download Cl	one Summary	Γ			
tifie	d clones. Additional clone fe	atures are provided in the do	ownloadable clone summary	file. Learn more					1.0 -			
	Joining	CDR3 AA	CDR3 NT	Variable Mutation	Count	Frequency	Rank	Isotype				
	IGHJ4	TAGVGTTDNDY	ACAGCGGGGGGTGGG	0.104	140090	0.7147814	1	IGHM	0.8 -			
	IGHJ4	TAGVGTTDNDY	ACAGCGGGGGGTGGG	0.104	45395	0.231619	2	IGHD				
	IGHJ6	ARDLDSYGSLTYYYG	GCGAGAGACCTGGA	0.041	1901	0.0096995	3	IGHA1	0.6 -			
	IGHJ6	ARIGATRPHPTYSYYA	GCGCGAATTGGAGC	0.155	474	0.0024185	4	IGHG3	Lrequency			
	IGHJ4	AKEEWWRLDY	GCGAAAGAGGAGTG	0.092	445	0.0022705	5	IGHG2	0.4 -			
	IGHJ5	VTTQYGPGSFGS	GTGACCACCCAATAT	0.133	135	0.0006888	6	IGHA2	<u> </u>			
	IGHJ6	ARVPYHGSGIDYYYY	GCGAGAGTTCCCTA	0.048	118	0.0006021	7	IGHA1	0.2 -			
	IGHJ6	ARIGATRPHPTYSYYA	GCGCGAATTGGAGC	0.155	107	0.000546	8	IGHA1				
	IGHJ6	ASGTGVTVVRGLGV	GCGAGTGGTACCGG	0.106	98	0.0005	9	IGHG1	0.0 -			
	IGHJ6	ARPRRYKYGNYYYFG	GCGAGACCCCGGCG	0.126	95	0.0004847	10	IGHA1	L	1	1	
6	7 8 9 10	▶ ▶ 10 ▼ it	ems per page				1	- 10 of 451 items		0	20	CE
_	12 - 42 111			IVD LL. D. ODDA								

Sample level table listing all detected clones, assigned VDJ labels, CDR3 sequence, counts, frequencies, somatic hypermutation levels, and other computed attributes

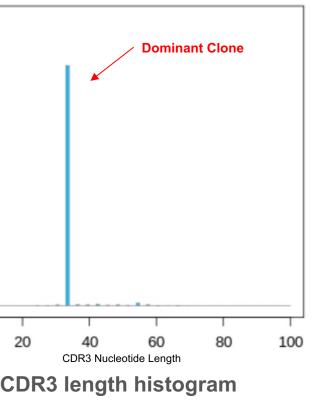
CONCLUSION

The Oncomine[™] Immune Repertoire workflows for T-cell and B-cell receptor sequencing were designed to be of high utility in distinct areas of malignancy research, and we expect them to greatly simplify complex downstream analyses. The unique capabilities of the workflows to automatically report secondary and tertiary repertoire features such as,

(i) BCR clonal lineages for improved dominant clone detection in blood cancers, (ii) TCR clone convergence for prediction of response to immune checkpoint inhibitors [1,2], (iii) TCR haplotype grouping for evaluation of risk factors for autoimmunity and immune-related adverse events [3], and (iv) isotype classification in BCRs for studying pan-cancer immune evasion mechanisms, demonstrate the clear advantages of using these automated workflows over other existing solutions.

REFERENCES

1) Looney TJ et al. (2020) TCR Convergence in Individuals Treated With Immune Checkpoint Inhibition for Cancer. Front. Immunol. 10:2985.


2) Naidus et al. (2021) Early changes in the circulating T cells are associated with clinical outcomes after PD-L1 blockade by durvalumab in advanced NSCLC patients. Cancer Immunology, Immunotherapy 70:2095–2102

3) Looney TJ et al. (2019) Haplotype Analysis of the T-Cell Receptor Beta (TCRB) Locus by Long-amplicon TCRB Repertoire Sequencing. Journal of Immunotherapy and *Precision Oncology.* 2 (4): 137–143.

CORRESPONDENCE

Shrutii Sarda shrutii.sarda@thermofisher.com

ThermoFisher SCIENTIFIC