
Controlled Transformation 
towards a 
Command-Driven / Event-Driven 
Microservice framework
üAvoiding Pinball-machines, synchronization 

problems, …
ü Improve the understanding of event 

architecture
üSimplifying message/event/data security
ü Improve change management
üSimplifying recovery from failures
üDefining boundaries 

(responsibility/accountability)
üAvoid distributed monoliths
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Orchestration 
within 
microservices



Problems
ü Reuse generic event workers that know nothing about Camunda
ü Include orchestration in each microservice
ü Do not depend on Java (allow cross platform components)

Gains
ü Separating logic of dispatching Camunda workload from workers
ü Single deployment of Camunda orchestration components Kubernetes (side-

car)
ü Allows Integration of enhanced security and RBAC without additional changes 

in Camunda (Java)
ü Allows hyper scalability of workload
ü Allows better control of workload (hence an intelligent service bus is used)

Trade-offs / Considerations
ü Complex infrastructure setup
ü Lock synchronization (message TTL and Camunda task TTL)
ü Message duplication (consider intelligent service bus features to deduplicate)
ü With External Service Architecture process execution is by default 

asynchronous
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Problems
ü Create dynamically scalable microservices with integrated orchestration
ü Include orchestration in each microservice
ü Enable business to control the logic of microservice
ü Do not depend on Java (allow cross platform components)

Gains
ü Allows scalability of each component separately within the bounded context 

of the Microservice
ü Plugin system to define executable workflows and business logic by business
ü Allows Integration of enhanced security and RBAC without additional changes 

in Camunda (Java)
ü Less complex infrastructure is needed
ü Camunda acts as internal bus and is responsible for managing workload 

(locking, etc.)
ü More integrated deployment = Deployment using Kubernetes Operators

Trade-offs and considerations
ü Complex infrastructure setup
ü Tide coupling of dependencies (worker / orchestration)
ü Additional logic needed to control the workload (Back-pressure and Back-off 

policies)
ü Consider a plugin system to keep the microservice component generic and 

ensure dynamic and flexible work executors.
ü With External Service Architecture process execution is by default 

asynchronous
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Business Rule Engines Data Transformers

Micro Workflows DMN Executors

Code Runners Http Connectors

LOW-CODE PLUGINS



Azure Service Bus (or any other feature rich bus)
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Specific Business Topics for External Service Tasks

Pros
ü Clarity in reporting
ü Allows more specific configuration of topic’s workload in 

the workers, e.g. variables to be fetched
ü Execution handler changes in the workers can change 

without a need for new process definition versions.

Cons
ü Large number of topics = more configuration = can cause 

performance issues 
ü Execution handler changes in the workers may have 

breaking impact in process, models are not tide.
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Generic Business Topics for External Service Tasks

Pros
ü Simplifies configuration
ü Allows fetching less topics = lower risk of performance issues 

in Camunda
ü More control from BPMN model to specify which 

plugin/execution needs to be done = strict coupling of 
process definition versions and execution parameters

Cons
ü Generic configuration = less control over which variables we 

want to fetch (usually fetch all variables and map them during 
the workload execution)

ü More control from BPMN model to specify which 
plugin/execution needs to be done = more version of process 
definitions when execution parameters change
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