
Controlled Transformation 
towards a 
Command-Driven / Event-Driven 
Microservice framework
üAvoiding Pinball-machines, synchronization 

problems, …
ü Improve the understanding of event 

architecture
üSimplifying message/event/data security
ü Improve change management
üSimplifying recovery from failures
üDefining boundaries 

(responsibility/accountability)
üAvoid distributed monoliths



DWH



Data Factory

Data Services 
External APIs

Business 
Intelligence Apps Marketing Data Science

Camunda Engine 
Orchestration and 
Optimize 

DWH

Data Lake



DWH

Camunda Optimize 
enabled Business 
Intelligence Center Data Lake

Data Services 
External APIs

Business 
Intelligence Apps Marketing Data Science

Camunda
enabled 
Microservice

Camunda
enabled 
Microservice

Camunda
enabled 
Microservice

Data Factory

Camunda
enabled Legacy 
Orchestration



Orchestration 
within 
microservices



Problems
ü Reuse generic event workers that know nothing about Camunda
ü Include orchestration in each microservice
ü Do not depend on Java (allow cross platform components)

Gains
ü Separating logic of dispatching Camunda workload from workers
ü Single deployment of Camunda orchestration components Kubernetes (side-

car)
ü Allows Integration of enhanced security and RBAC without additional changes 

in Camunda (Java)
ü Allows hyper scalability of workload
ü Allows better control of workload (hence an intelligent service bus is used)

Trade-offs / Considerations
ü Complex infrastructure setup
ü Lock synchronization (message TTL and Camunda task TTL)
ü Message duplication (consider intelligent service bus features to deduplicate)
ü With External Service Architecture process execution is by default 

asynchronous

6



Workers

Azure Service Bus (or any other feature rich bus)

topic-A-fetched

Workers
Workers

Generic Event Workers * n

Workers
Workers

Workers
Generic Event Workers * n

Workers
Workers

Workers
Generic Event Workers * n

topic-A-completed topic-A-failed topic-B/C-fetched topic-B/C-completed topic-B/C-failed

Camunda Engine * n1

Camunda

Data

Dispatcher * n1
(side-car)

Fetcher

Completer

Failed Completer

Microservice Triggers * n1
(side-car)

HTTP / OAuth2

Event Triggers

Proxy Camunda

Camunda Engine * n1

Camunda

Data

Dispatcher * n1
(side-car)

Fetcher

Completer

Failed Completer

Microservice Triggers * n1
(side-car)

HTTP / OAuth2

Event Triggers

Proxy Camunda

microservice specific topics microservice specific topics



Problems
ü Create dynamically scalable microservices with integrated orchestration
ü Include orchestration in each microservice
ü Enable business to control the logic of microservice
ü Do not depend on Java (allow cross platform components)

Gains
ü Allows scalability of each component separately within the bounded context 

of the Microservice
ü Plugin system to define executable workflows and business logic by business
ü Allows Integration of enhanced security and RBAC without additional changes 

in Camunda (Java)
ü Less complex infrastructure is needed
ü Camunda acts as internal bus and is responsible for managing workload 

(locking, etc.)
ü More integrated deployment = Deployment using Kubernetes Operators

Trade-offs and considerations
ü Complex infrastructure setup
ü Tide coupling of dependencies (worker / orchestration)
ü Additional logic needed to control the workload (Back-pressure and Back-off 

policies)
ü Consider a plugin system to keep the microservice component generic and 

ensure dynamic and flexible work executors.
ü With External Service Architecture process execution is by default 

asynchronous

8

Business Rule Engines Data Transformers

Micro Workflows DMN Executors

Code Runners Http Connectors

LOW-CODE PLUGINS



Azure Service Bus (or any other feature rich bus)

microservice specific topics other external topics

Camunda Engine * n2

Microservice Triggers * n3

Camunda Workers * n1

ne
xx

lo
gi

c m
icr

os
er

vic
es

Data

Camunda

Fetcher

Completer

Failed Completer

PLUGINS

PLUGINS
Camunda Proxy

Generic Event Triggers

Http triggers / OAuth / RBAC

Camunda Engine * n2

Microservice Triggers * n3

Camunda Workers * n1

ne
xx

lo
gi

c m
icr

os
er

vic
es

Data

Camunda

Fetcher

Completer

Failed Completer

PLUGINS

PLUGINS
Camunda Proxy

Generic Event Triggers

Http triggers / OAuth / RBAC



Specific Business Topics for External Service Tasks

Pros
ü Clarity in reporting
ü Allows more specific configuration of topic’s workload in 

the workers, e.g. variables to be fetched
ü Execution handler changes in the workers can change 

without a need for new process definition versions.

Cons
ü Large number of topics = more configuration = can cause 

performance issues 
ü Execution handler changes in the workers may have 

breaking impact in process, models are not tide.

10

Generic Business Topics for External Service Tasks

Pros
ü Simplifies configuration
ü Allows fetching less topics = lower risk of performance issues 

in Camunda
ü More control from BPMN model to specify which 

plugin/execution needs to be done = strict coupling of 
process definition versions and execution parameters

Cons
ü Generic configuration = less control over which variables we 

want to fetch (usually fetch all variables and map them during 
the workload execution)

ü More control from BPMN model to specify which 
plugin/execution needs to be done = more version of process 
definitions when execution parameters change





Camunda 7.15.0


