Camunda BPM Data
Beautiful process data handling for Camunda BPM

Jholisticon

https://github.com/holunda-io/camunda-bpm-data

Some history

m Around 10 years ago Bernd Ruecker started the first Camunda community skype call
m \We arranged to meet regularily

m Martin Schimak, Bernd, Jan and me were there (and some guys | don't remember)

B The second meetup was dedicated to data in processes

0 Camunda Best Practices Changelog Q

July 27, 2016 - Initial Release of Camunda Best Practices
27 best practice articles, all of them being focused on concrete practical challenges.

o New Content
Building a Custom Tasklist/Application
Cleaning Up Historical Data
Creating Readable Process Models
Dealing With Problems and Exceptions
Deciding About Your Stack
Deciding About Your Tasklist
Handling Data in Processes
Enhancing Tasklists with Business Data
Estimating Effort
Following the Customer Success Path
Integrating a Third Party Tasklist

Invoking Services from the Process

Jholisticon

https://github.com/holunda-io/camunda-bpm-data

Process Variables in Camunda BPM

Jholisticon

https://github.com/holunda-io/camunda-bpm-data

Jholisticon

Basic Idea

Dynamic map of process variables

In every process step this map can be accessed and modified
Changes in this map corresponds to data flow

The key In this map corresponds to process variable name (String)

The value reflects the process variable value (Object)

https://github.com/holunda-io/camunda-bpm-data

Process data loading strategies

m full
[load all data and store it in process variables
O all data available for delegates
[0 snapshot of the data

m references only

0 work only with references
1 data must be loaded via reference
[0 data is in-sync

Camunda says: "As a rule of thumb, store as less few variables as possible within Camunda."

Jholisticon

https://github.com/holunda-io/camunda-bpm-data

Jholisticon

Process data storage strategies

m flat variables

[0 many variables
[only some pre-defined types
[0 no serialization issues

m rich objects

1 fewer variables
1 serialization matters

https://github.com/holunda-io/camunda-bpm-data

Process data serialization

B basic types
0 Number
O String
[0 Boolean
O Date
O bytes
O file

m binary (Java Serializable)

m SPIN

0 XML
0 JSON (via Jackson)

Jholisticon

https://github.com/holunda-io/camunda-bpm-data

Jholisticon

Thank you for listening... you made it!
Wait, there is more...

o Camunda Best Practices Changelog Q

Using Constants and Data Accessors

Avoid the copy/paste of string representations of your process variable names across your code base. At least collect the variable names for a process definition in

a Constants interface/class:

public interface TwitterDemoProcessConstants {
String VAR NAME TWEET = "tweet";
String VAR NAME APPROVED = "approved";

This way, you have much more security against typos and can easily make use of refactoring mechanisms offered by IDEs.

However, if you also want to avoid spreading the necessary type conversion (casting) all over your application and want to have a natural place for serializing
your complex process variables, we recommend that you use a Data Accessor class. It comes in two flavors:

= A Process Data Accessor: knows the names and types of all process variables of a certain process definition. It serves as the central point to declare variables

for that process.

» A Process Variable Accessor: encapsulates the access to exactly one variable. This is useful if you reuse certain variables in different processes.

https://github.com/holunda-io/camunda-bpm-data

Jholisticon

What does it mean?

public class OrderProcessConstants {
public static final String ORDER = "order";
public static final String ORDER_APPROVED = "orderApproved";

}

public class OrderProcessVariables {
private VariableScope variableScope;

public OrderProcessVariables(VariableScope variableScope) {
this.variableScope = variableScope;

}

public Order getOrder(% { _
return (Order) variableScope.getVariable(OrderProcessConstants.ORDER);

public void setOrder(Order order)
variableScope.setVariable(OrderProcessConstants.ORDER, order);

}

public Boolean isApproyedi) { _
return (Boolean) variableScope.getVariable(OrderProcessConstants.ORDER_APPROVED);

public void setApproved(Boolean approved) {
variableScope.setVariable(OrderProcessConstants.ORDER_APPROVED, approved);

}
}

https://github.com/holunda-io/camunda-bpm-data

Jholisticon

Room for improvement

Constants hold variable names

Type must be held in the data accessor

Data accessor for multiple scopes (delegate, services)

An implicit type downcast is required (or the client must know the type)
Pretty verbose

Plumbing in business code...

Testing of Camunda services is silly

https://github.com/holunda-io/camunda-bpm-data

Jholisticon

Time for a new library!

FOSS library for working with Camunda variables
Variable Factory (data accessor)

improved API (fluent, more intuitive)

guarantees type-safety

guards for validation

building blocks for anti-corruption-layer

Kotlin extension functions

Mockito support methods for testing

https://github.com/holunda-io/camunda-bpm-data

Variable declaration example

import i1o.holunda.camunda.bpm.data.factory.VariableFactory;
import static io.holunda.camunda.bpm.data.CamundaBpmData.™;

public class OrderApproval {

public static final VariableFactory<String>

public static final VariableFactory<Order>
public static final VariableFactory<Integer> e
public static final VariableFactory<List<OrderPosition>>

ORDER_ID = stringVariable("orderId");
ORDER = customVariable("order", Order.class);

ORDER_POSITIONS_COUNT = inte
ORDER_POSITIONS = listVariab

?

erVariable("orderPositionsCount");
e("orderPositions", OrderPosition.class);

Jholisticon

https://github.com/holunda-io/camunda-bpm-data

Variable access

public class MyDelegate implements JavaDelegate {
public void execute(DelegateExecution execution) {

Order order = ORDER.from(execution).get();

}
¥

public class TaskHelper {

private TaskService taskService;

public void setNewValuesForTask(String taskId, String orderId, Boolean orderApproved) {
ORDER_ID.on(taskService, taskId).set(orderId);
ORDER_APPROVED.on(taskService, taskId).setLocal(orderApproved);

Jholisticon

https://github.com/holunda-io/camunda-bpm-data

Summary and Outlook

m provides facilities to implement Camunda Best Practices

m allows for type safe access to process variables by

[0 variable factories

[variable readers / writers (Fluent API)

] variable guards

[0 anti-corruption-layer

[testing support for Camunda Services access

m itis 100% open source

O APACHE 2.0 License
[released on Maven Central (10.holunda.data:camunda-bpm-data)
[0 Contributions are welcome

B next steps

PR O will move to Camunda Community HUB soon
Oholisticon |
OlIstico [0 get closer to Camunda BPM Mockito

https://github.com/holunda-io/camunda-bpm-data

Jholisticon

Ntt
Ntt
Ntt

Ntt

References

0s://github.com/holunda-io/camunda-bpm-data
0s.//www.holunda.io/camunda-bpm-data/

0s.//camunda.com/best-practices/handling-data-in-processes/
0s://github.com/camunda/camunda-bpm-mockito

Camunda BPM Data Quick Start User Guide~ Developer Guide~ Java Packages~ Kotlin Packages ~

Camunda BPM Data

Beautiful process data handling for Camunda BPM.

Download

Home Search Go

Why should | use this? .

If you are a software engineer and run process automation projects in your company or on behalf of the customer based on Camunda
Process Engine, you probably are familiar with process variables. Camunda offers an API to access them and thereby manipulate the
state of the process execution - one of the core features during process automation.

Unfortunately, as a user of the Camunda API, you have to exactly know the variable type (so the Java class behind it). For example, if
you store a String in a variable "orderId” you must extract it as a String in every piece of code. Since there is no code connection

between the different code parts, but the BPMN process model orchestrates these snippets to a single process execution, it makes
refactoring and testing of process automation projects error-prone and challenging.

This library helps you to overcome these difficulties and make access, manipulation and testing process variables really easy and
convenient. We leverage the Camunda AP and offer you not only a better API but also some additional features.

How to start?

A good starting peint is the Quick Start. For more detailed documentation, please have a look at User Guide.

https://github.com/holunda-io/camunda-bpm-data
https://www.holunda.io/camunda-bpm-data/
https://camunda.com/best-practices/handling-data-in-processes/
https://github.com/camunda/camunda-bpm-mockito
https://github.com/holunda-io/camunda-bpm-data

