
Enterprise web
scraping: A guide to
scraping at a scale
How to build a scalable web scraping
infrastructure for your business or project.

Z Y T E PA P E R

Web scraping can look deceptively easy
when your starting out. There are numerous
open-source libraries/ frameworks, visual
scraping tools and data extraction tools that
make it very easy to scrape data from a
website. However, when you want to scrape
websites at scale, things start to get very
tricky, very fast.

That is why it is critical that you build a
web scraping infrastructure that is able to
overcome the two biggest challenges of
scaping the web at scale: speed and data
quality.

As time is usually a limiting constraint,
scraping at scale requires your crawlers to
scrape the web at very high speeds without
compromising data quality. This need for
speed makes scraping large volumes of
product data very challenging.

In this guide, we’re going to discuss the 5
foundations you need to put in place if you
want to scrape the web at scale.

Introduction

Foundation #1
Scalable architecture
The first building block of any large scale
web scraping project is to development
of a scalable architecture. Without
an architecture that enables you to
asynchronously scrape data from the web,
you’re unlikely to get enough throughput
with your spiders.

The first step to do this is to:

3| Guide to enterprise web scraping

Allocate more resources to your
extraction spiders

Typically, in most web scraping projects,
there will be some form of index page that
contains links to numerous other pages
that need to be scraped. In the case of
e-commerce, these pages are typically
category “shelf” pages that contain links
to numerous product pages. For blog articles,
there is alway a blog feed that contains links
to each of the individual blog posts.

As each product category “shelf” can
contain anywhere from 10 to 100 products
and extracting product data is more
resource heavy than extracting a product
URL, discovery spiders typically run faster
than product extraction spiders. When
this is the case, you need to have multiple
extraction spiders for every discovery
spider. A good rule of thumb is to create
a separate extraction spider for each
~100,000 page bucket.

Separate discovery spiders from
extraction spiders

When scraping at a smaller scale, you can
often get away with having the same spider
discover and scrape records. However, when
scraping at scale you really need to separate
your discovery spiders from your extraction
spiders.

In the case of e-commerce, this would be
developing one spider, the product discovery
spider, to discover and store the URLs of
products in the target category, and another
spider to scrape the target data from the
product pages.

Using this approach allows you to split the
two core processes of the web scraping,
crawling and scraping, and enables the
allocation of more resources to one process
over the other, and helping you avoid
bottlenecks. Which brings us onto the next
point.violating copyright.

Foundation #2
High performance configuration
After developing a scaleable architecture
during the planning stages of your web
scraping project, the next fundamental
foundation you need to develop when
scraping at scale is configuring your
hardware and spiders for high performance.

Oftentimes, when developing enterprise
scale web scraping projects, speed is
the most important concern. In a lot of
applications, enterprise scale spiders need
to have finished their full scrape in a defined
period of time. In the case of e-commerce,
where companies are using web data to
adjust their pricing, their spiders need
to have scraped their competitors entire
catalogue of products within a couple hours
so that they can adjust.

In the case of travel comparison websites,
they need to make sure their data is always
up to date otherwise they mightn’t be
showing the correct prices.

This need for speed poses big challenges
when developing an enterprise level web
scraping infrastructure. Your web scraping
team will need to find ways to squeeze every
last ounce of speed out of your hardware
and make sure that it isn’t wasting fractions
of a second on unnecessary processes.

To do this enterprise, web scraping teams
need to develop a deep understanding of the
web scraping framework they are using (for

4| Guide to enterprise web scraping

example Scrapy), build a robust proxy
management infrastructure, and configure
the hardware they are using so can get the
optimal performance from their spiders.

The most important consideration for
building a high throughput web scraping
infrastructure is spider design and
crawling efficiency.

Foundation #3
Spider design & crawl efficiency
When scraping at scale, you always need
to be focused on crawling efficiency and
robustness. Your goal should always be to
solely extract the exact data you need in as
few requests and as reliably as possible. Any
additional requests or data extraction slow
the pace at which you can crawl a website.

However, when scraping at scale, not only do
you have to navigate potentially hundreds of
websites with sloppy code, you will also have
to deal with constantly evolving websites. A
good rule of thumb is to expect your target
website to make changes that will break
your spider (drop in data extraction coverage
or quality) every 2-3 months.

That mightn’t sound like too big a deal,
but when you are scraping at scale, those
incidents really add up. For example, one
of Zyte’s larger e-commerce projects has
~4,000 spiders targeting about 1,000
e-commerce websites, meaning they can
experience 20-30 spiders failing per day.

Unfortunately, there is no simple solution to
these challenges. Most of the time, it is just a
matter of committing more resources to your
web scraping projects. To use the previous
web scraping project as an example again,
that project has a team of full-time 18
crawl engineers and 3 dedicated QA
engineers to ensure the client always has
reliable data feed.

However, with experience you’ll begin
to develop more robust and higher

5| Guide to enterprise web scraping

performance spiders that allow you to shave
hours off scrapes and ensure that you’re not
constantly troubleshooting broken spiders.
Here are some best practices to keep in mind:

Instead of having multiple spiders for all
the possible layouts a target website might
use, it is best practice to have only one
product extraction spider that can deal
with all the possible rules and schemes
used by different page layouts. The more
configurable your spiders are the better.

Only use a headless browser, such as
Splash or Puppeteer, to render javascript
as a last resort. Rendering javascript with
a headless browser whilst crawling is very
resource intensive and severely impacts
the speeds at which you can crawl.

Don’t request or extract images unless you
really have to.

f you can get the data you need from
a single page without requesting each
individual item page then always confine
your scraping to the index/category
page. An example of this is scraping
product data, if you can get the data you
need from the shelf page (e.x. Product
names, price, ratings, etc.) without
requesting each individual product page,
then don’t request the product pages.

Although these practices will make your
spiders more complex (some of our spiders
are thousands of lines long), it will ensure
that your spiders are easier to maintain.

As most companies need to extract product
data on a daily basis, waiting a couple days
for your engineering team to fix any broken
spiders isn’t an option. When these situations
arise, Zyte uses a machine learning based
data extraction tool that we’ve developed as
a fallback until the spider has been repaired.
This ML-based extraction tool automatically
identifies the target fields on the target
website (product name, price, currency,
image, SKU, etc.) and returns the desired
result.

Alongside building scalable and robust
spiders, you also need to build a scalable
proxy management infrastructure.
Having a robust proxy management system
is critical if you want to be able to reliably
scrape the web at scale and target location-
specific data. Without a healthy and
well-managed proxy pool, your team will
quickly find itself spending most of it’s time
trying to manage proxies and will be unable
to adequately scrape at scale.

When scraping at scale, you will need
a sizeable list ofproxies and will need to
implement the necessary IP rotation,
request throttling, session management and
blacklisting logic to prevent your proxies from
getting blocked.

6| Guide to enterprise web scraping

Foundation #4
Scalable proxy infrastructure

Unless you have or are willing to commit a
sizeable team to manage your proxies you
should outsource this part of the scraping
process. Your best option is to use a single
endpoint proxy solution that takes care of all
complexities of managing proxies.

Crawlera, the smart proxy network
developed by Zyte, is one such single
endpoint proxy solution that allows you
to focus on the data, not proxies.

The key component of any large-scale
web scraping project is having a system for
automated data quality assurance.

Data quality assurance is often one of the
most overlooked aspects of web scraping.
Everyone is so focused on building spiders
and managing proxies that they rarely think
about QA until they are running into serious
problems.

At its core, a web scraping project is only as
good as the data it can produce. Even if you
have the fanciest web scraping infrastructure
on the planet, unless you have a robust
system to ensure you are getting a reliable
stream of highly qualified data your web
scraping project will often be discontinued.

The key to data quality assurance for large-
scale web scraping projects is making it as
automated as possible. If you are scraping
millions of records per day, it is impossible to
manually validate the quality of your data.

At Zyte we recommend that you apply a
similar four-layer QA process, as the QA
process we apply to all the projects we
undertake with clients.

7| Guide to enterprise web scraping

Foundation #5
Automated data QA

Beyond Proxies

Unfortunately, just using a proxy service
won’t be enough to ensure you reliably scrape
larger websites. More and more websites are
using sophisticated anti-bot countermeasures
that monitor your crawlers behaviour to
detect that it isn’t a real human visitor.

Not only do these anti-bot countermeasures
make scraping e-commerce sites more
difficult, overcoming them can significantly
dent your crawlers performance if done
incorrectly.

As a result, to ensure you can achieve the
necessary daily throughput from your spiders
you’ll often need to design your spider to
counteract anti-bot countermeasures
without using a headless browser such as
Splash or Puppeteer. These browsers render
any javascript on the page but as they are
very heavy on resources they drastically
slow the speed at which you can scrape a
website. Making them practically unusable
when scraping at scale, other than a edge
case where you have pursued every other
available option.

8| Guide to enterprise web scraping

Layer 2 – Spidermon

Spidermon is a spider monitoring framework
we’ve developed to monitor and validate the
data as it is being scraped.

Layer 3 – Manually-Executed Automated QA

The third component of Scrapinghub’s QA
process are the Python-based automated
tests our dedicated QA team develops and
executes. During this stage, datasets are
analysed to identify any potential sources
of data corruption. If any issues are found,
these are then manually inspected by the
QA engineer.

Layer 4 – Manual/Visual QA

The final step is to manually investigate
any issues flagged by the automated QA
process and additionally manually spot
check sample sets of data to validate that
the automated QA steps haven’t missed any
data issues.

Only after passing through all four of these layers
is the dataset then delivered to the client.

Layer 1 – Pipelines

Pipelines are rule-based Scrapy constructs
designed to cleanse and validate the data as
it is being scraped.

Enterprise
web scraping:
Build in-house
or outsource?

Your goal isn’t to just have a solution that
meets your needs for today, but one that
can evolve and meet all future needs as your
requirements and goals change. For a lot
of companies, this means outsourcing their
web scraping to a dedicated web scraping
firm is the best option. It allows them to have
a world class web scraping infrastructure
without the hassle of maintaining it, and
if their business needs change their web
scraping partner can quickly upgrade the
infrastructure to meet those new business
requirements.

For those of you who are interested in
scraping the web at scale, but are wrestling
with the decision of whether or not you
should build up a web scraping team
in-house or outsource it to a web
scraping firm then be sure to set up a free
consultation with our Solution Architect
team, who will help you choose the best
solution for your needs.

Oftentimes, most of these companies
already have developed some form of
internal web scraping infrastructure, however,
now it is either too much of a burden to
handle or they want to scale it up but don’t
have the internal resources to do so.

In some cases, an in-house solution might
make the most sense, depending on your
current resources and needs. However,
the question companies need to be asking
themselves is: how will these resources
requirements and business needs evolve
over time?

10| Guide to Enterprise Web Scraping

This is the most
frequent question
we hear companies
debating internally
when it comes
to enterprise web
scraping.

www.zyte.com
Copyright 2021 © Zyte

Cuil Greine House, Ballincollig Commercial
Park Link Road, Ballincollig, Co. Cork, Ireland

At Zyte we turn websites
into data with industry leading
technology and services.
Our solutions include:

Data Extraction Service
Let our web scraping experts build and
manage the bespoke data extraction
solution for your business needs.

Smart Proxy Manager (formerly Crawlera)
Forget about proxy lists. We manage
hundreds of thousands of proxies,
so you don’t have to.

Automatic Extraction powered by AI
Instantly access accurate web data
through our user-friendly interface or
various Extraction APIs and save time
getting the data you need.

Data extraction platform
Access developer tools, data extraction
APIs and documentation, built and
maintained by our world-leading team
of over 100 extraction experts.

Access clean, valuable data with web scraping services that
drive your business forward.

Talk to us

It’s yours. The web data you need.

http://www.zyte.com
https://www.zyte.com/talk-to-us/

