EQUIPMENT: Sludge Thickener THK Series

The Lowest Total Cost of Ownership in the Industry

Centrisys Sludge Thickener

The THK sludge thickener is engineered for high-performance biosolids thickening. Compared to other centrifugal sludge thickening technologies, the THK uses 50% less power, and dramatically reduces or even eliminates the need for polymer conditioning. Thanks to these savings, the THK represents the lowest total cost of ownership in the industry.

- Proven no polymer performance
 - Thickens from 4% to 6% without polymer
 - Minimizes foam in digester
 - Reduces carbon footprint
- 50% less power consumption compared to other centrifugal sludge thickening technology
- All cylindrical/no conical design provides the greatest G-volume in comparison to other centrifuges of similar bowl diameter
 - THK200 = up to 250 gpm
 - THK350 = up to 525 gpm
 - THK600 = up to 1,100 gpm
- Optimization is a simple, two-step approach
 - Basic tuning: customize results with independent control of liquids weir and solids weir
 - Fine tuning: patented hydropneumatic control maintains solids to digester

- Doubles the solids concentration:
 - Doubles the solids retention time in the digester or doubles the digester capacity
 - Reduces digester heat requirement by 50% - only half of the flow needs to be heated to the digester ambient temperature of 100 °F (40 °C)
 - Doubles digester capacity
- Enclosed system increases hygienic operation and safety for operators
 - Reduces odors and gases, mainly
- Eliminates transmission of pathogens because hosing down equipment is not necessary
- Minimizes an odor control system
- Smallest footprint efficiently utilizes available plant space

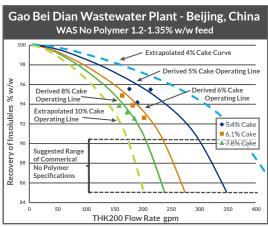
- Primary sludge
- Secondary (waste activated) sludge
- Oxidation ditch sludge
- Digested sludge
- MBR (membrane bioreactor) sludge
- Dilute pulp and paper waste prior to dewatering
- Concentration of food processing waste
- Concentration of algae
- Concentration of yeast

Features

- Proven no polymer required under normal conditions (150 SVI)
- Smallest and most efficient footprint for given flow rates compared to gravity belt and rotary drum thickening technologies
- Contained vapor system
- Expected ROI of 2.5 years due to polymer savings alone
- Reduced operating and maintenance costs
- 50% less power consumption compared to standard dewatering centrifuges
- Reduced installation costs by 35-50% (\$/gpm)
- Simple to operate with minimal operator attention

EQUIPMENT: Sludge Thickener THK Series

Thickening Solutions: USA Built, Sold & Serviced Around the World



Sludge Thickener THK Series							
	THK200		THK350		THK600		
	Maximum	Average	Maximum	Average	Maximum	Average	
Feed Flow Rate w/o Polymer* gpm	180	125	320	265	765	640	
Feed Flow Rate w/ Polymer* gpm	250	200	500	425	1,100	800	
Approx. Bowl Diameter in (m)	18 (0.45)		21 (0.53)		26 (0.66)		
Total Static Weight - Empty lbs (kg)	5,000 (2,950)		10,800 (4,900)		27,000 (12,250)		
Standard Main Drive HP	40-50		50-75		150-200		
Standard Scroll Drive HP	10		15		25		
Standard Total Installed HP	50-60		75-90		175-225		

Sludge Thio THK Series Pe		Waste Activated Sludge (WAS)	WAS/Primary Blend	
N D I 0 16	Minimum	0.07	0.08	
No Polymer Specific Power* kW/gpm	Maximum	0.18	0.19	
T OWEI RVV/Spill	Average	0.12	0.15	
	Minimum	0.05	0.05	
Polymer Specific Power* kW/gpm	Maximum	0.15	0.18	
K V V Spill	Average	0.08	0.10	
Average Solids Recovery	w/o Polymer	93	90	
% wt./wt.	w/ Polymer	99	97	
Average Cake Solids %	w/o Polymer	4 to 7		
Total Solids	w/ Polymer	5 to 10		

^{*}Values are approximate for Influent Solids of 0.5% to 1.5% WAS. Specific power estimations are for normal flows. Contact Centrisys for project-specific calculations.

