Transonic HD03 On-the-Spot Vascular Access Assessment

Confirm Delivered Flow
Detect Recirculation
Measure Access Flow

- **Delivered Flow**: Delivered flow can differ from the dialysis pump setting. It is important to compare the pump setting to the actual circuit flow so you can optimize your dialysis patient’s treatment on the spot.

- **Recirculation**: The HD03 separates vascular access recirculation from cardiopulmonary recirculation (CPR). The HD03 measures the actual percentage of recirculation.

- **Vascular Access Blood Flow**: The HD03 measures Access Flow up to 4000ml/min. Changes in the Access Flow can indicate access dysfunction, including inflow stenosis and outflow stenosis. High Access Flow can identify risk of steal, hand ischemia, and high output cardiac failure. Access Flow measurement are used to trend changes over time and to confirm other clinical indicators including physical exam indications of dysfunction.
Overview of AV Fistula or AV Graft Protocols

Start
New patient or revised vascular access

Physical Exam or Check
One-minute Check

Initial Dialysis Adequacy
Measure initial DF, Recirc, AF

Nephrologist Analysis
- Establish Access Flow levels.
- Establish a testing schedule.

Nurses’ Analysis
Optimize dialysis delivery immediately from DF, Recirc results. Repeat at established intervals.

Access Monitoring
(Single measurement monthly)
Additional Transonic Measurement if One-Minute Check finds a change.

Is AF outside the critical threshold range?

NO

YES

Post Intervention

Nephrologist Analysis
If ordered, schedule any additional evaluations (such as a fistulogram).
Lower Arm Arteriovenous (AV) Fistula

Lower Arm AV Fistula Blood Flow Trending (mL/min each month)

AVF: > 600 mL/min
AV access flow falls 25% in 4 months1,2

AVF: < 600 mL/min
Evaluate for steal, hand ischemia, and high-output cardiac failure.

AVF: > 2000 mL/min

13.9 KDOQI considers it reasonable for patients with consistently persistent clinical indicators and underlying AV access stenosis to undergo preemptive angioplasty of their AV access to reduce the risk of thrombosis and AV access loss. (Expert Opinion)

Normal

Fistulogram

Surgeon
(Revision or new access)

Technical Failure

Post-Intervention Measurements
Flow should return to expected access flow range.

Presumptive Success

Nephrologist re-evaluates indicators of dysfunction.

Interventionalist

Success Criteria Met

Abnormal

Preferred referral path

Success Criteria Not Met

CLINICAL INTERPRETATION KEY:

Probable risk for Hemodynamically Significant Stenosis/Recirculation as flow decreases (indicated by color progression from blue to purple)

Action: Consider Clinical Examination & Imaging

Expected Access Flow Range

Expected flow range is ideal. However, a sudden drop of 25% in this range may signal a potential onset of stenosis.

Action: If Flow Is Steady, Continue Monitoring. If 25% Decrease Occurs, Consider Clinical Exam & Imaging

Probable risk for Cardiac Failure as flow increases (indicated by color progression from yellow to red)

Action: Evaluate the patient for signs and symptoms of high output cardiac failure.

Notes:

- Actual flow levels for AV fistula and graft patients should be customized by the nephrologist.
- A clinical examination (look, listen, feel, arm elevation and augmentation) should be used routinely as part of the pre-cannulation process.
- Transonic access flow measurements are intended to be utilized in conjunction with a clinical examination to detect/confirm indications of access dysfunction.
- Snuffbox or endovascular fistulas may have a lower access flow range depending on the location of the anastomosis and the vessel’s outflow configuration.
- Upper arm AV fistulas typically have a higher access flow range due to the larger artery size.
- A potential for cardiac overload exists at flow >1600-3000 mL/min. Evaluate patient for signs and symptoms of high-output cardiac failure.
Upper Arm Arteriovenous (AV) Fistula

Access Blood Flow Trending (mL/min each month)

- **AVF: > 800 mL/min**
- **AVF: < 800 mL/min**
 - AV flow falls 25% in 4 months
- **AVF: > 2000 mL/min**

Fistulogram

- **Normal**
 - Nephrologist re-evaluates indicators of dysfunction.
- **Abnormal**
 - Surgeon (Revision or new access)
 - Interventional Radiologist/Nephrologist (PTA/Thrombolysis/Stent)

Post-Intervention Measurements

- Flow should return to expected access flow range.

Success Criteria Met

Success Criteria Not Met

Technical Failure

Preferred referral path

KDOQI considers it reasonable for patients with consistently persistent clinical indicators and underlying AV access stenosis to undergo preemptive angioplasty of their AV access to reduce the risk of thrombosis and AV access loss. (Expert Opinion)

CLINICAL INTERPRETATION KEY:

- **Probable risk for Hemodynamically Significant Stenosis/Recirculation as flow decreases** (indicated by color progression from blue to purple)
- **Expected Access Flow Range**
 - Expected flow range is ideal. However, a sudden drop of 25% in this range may signal a potential onset of stenosis.
- **Probable risk for Cardiac Failure as flow increases** (indicated by color progression from yellow to red)

Action:

- **Consider Clinical Examination & Imaging**
- **If Flow Is Steady, Continue Monitoring. If 25% Decrease Occurs, Consider Clinical Exam & Imaging**
- **Evaluate the patient for signs and symptoms of high output cardiac failure.**

Notes:

- Actual flow levels for AV fistula and graft patients should be customized by the nephrologist.
- A clinical examination (look, listen, feel, arm elevation and augmentation) should be used routinely as part of the pre-cannulation process.
- Transonic access flow measurements are intended to be utilized in conjunction with a clinical examination to detect/confirm indications of access dysfunction.
- Snuffbox or endovascular fistulas may have a lower access flow range depending on the location of the anastomosis and the vessel’s outflow configuration.
- Upper arm AV fistulas typically have a higher access flow range due to the larger artery size.
- A potential for cardiac overload exists at flow >1600-3000 mL/min. Evaluate patient for signs and symptoms of high-output cardiac failure.
Arteriovenous (AV) Graft

Access Blood Flow Trending (mL/min each month)

AVG: > 800 mL/min
AVG: < 800 mL/min
AV access flow falls 25% in 4 months\(^2\)
AVG: > 2000 mL/min

13.9 KDOQI considers it reasonable for patients with consistently persistent clinical indicators and underlying AV access stenosis to undergo preemptive angioplasty of their AV access to reduce the risk of thrombosis and AV access loss. (Expert Opinion)

Evaluate for steal, hand ischemia, and high-output cardiac failure.

Normal
Fistulogram
Nephrologist re-evaluates indicators of dysfunction.

Surgeon
(Revision or new access)

Fistula should return to expected access flow range.

Fistulogram
Technical Failure

Post-Intervention Measurements

Presumptive Success

Surgeon
(Revision or new access)

Interventional Radiologist/Nephrologist
(PTA/Thrombolysis/Stent)

Preferred referral path

Success Criteria Met

Success Criteria Not Met

Notes:
- Actual flow levels for AV fistula and graft patients should be customized by the nephrologist.
- A clinical examination (look, listen, feel, arm elevation and augmentation) should be used routinely as part of the pre-cannulation process.
- Transonic access flow measurements are intended to be utilized in conjunction with a clinical examination to detect/confirm indications of access dysfunction.
- Snuffbox or endovascular fistulas may have a lower access flow range depending on the location of the anastomosis and the vessel’s outflow configuration.
- Upper arm AV fistulas typically have a higher access flow range due to the larger artery size.
- A potential for cardiac overload exists at flow >1600-3000 mL/min. Evaluate patient for signs and symptoms of high-output cardiac failure.
2019 Vascular Access KDOQI Guidelines

Statements: Appropriate Use of Monitoring/Surveillance for AV Access Flow Dysfunction

Physical Examination (Monitoring)

13.1 KDOQI recommends regular physical examination or check of the AVF by a knowledgeable and experienced health practitioner to detect clinical indicators of flow dysfunction of the AVF. (Conditional/Strong Recommendation, Moderate Quality of Evidence) See Table 13.2 for clinical indicators.

13.2 KDOQI recommends regular physical examination or check of the AVG, by a knowledgeable and experienced health practitioner, to detect clinical indicators of flow dysfunction of the AVG. (Conditional/Strong Recommendation, Moderate Quality of Evidence) See Table 13.2 for clinical indicators.

13.3 KDOQI considers it reasonable for nephrology trainees and health practitioners involved with clinical HD patient care to be properly trained in physical examination of the AV access to monitor for and detect AV access flow dysfunction. (Expert Opinion)

Surveillance to Facilitate Patency

13.4 There is inadequate evidence for KDOQI to make a recommendation on routine AVF surveillance by measuring access blood flow, pressure monitoring, or imaging for stenosis, that is additional to routine clinical monitoring, to improve access patency. *Note: In other words, monitoring of vascular access is primary, while surveillance findings are supplementary, and action should not be based solely on surveillance findings.*

13.5 KDOQI does not suggest routine AVG surveillance by measuring access blood flow, pressure monitoring, or imaging for stenosis, that is additional to regular clinical monitoring, to Guideline 13. AV Access Flow Dysfunction—Monitoring/Surveillance S80 AJKD Vol 75 | Iss 4 | Suppl 2 | April 2020/

Endovascular Interventions to Improve Patency

13.6 KDOQI does not recommend pre-emptive angioplasty of AVFs with stenosis, not associated with clinical indicators, to improve access patency. (Conditional Recommendation, Moderate Quality of Evidence)

13.7 KDOQI does not recommend pre-emptive angioplasty of AVGs with stenosis, not associated with clinical indicators, to improve access patency. (Conditional Recommendation, Moderate Quality of Evidence)

Surgical Interventions to Improve Patency

13.8 There is inadequate evidence for KDOQI to make a recommendation on pre-emptive surgical interventions in AVFs with stenosis, not associated with clinical indicators, to improve access patency.

Statement: Pre-emptive Intervention for AV Access Stenosis Associated With Clinical Indicators

13.9 KDOQI considers it reasonable for patients with consistently persistent clinical indicators and underlying AV access stenosis to undergo preemptive angioplasty of their AV access to reduce the risk of thrombosis and AV access loss. (Expert Opinion)
Table 13.1. Routine AV Access Monitoring by Physical Examination

<table>
<thead>
<tr>
<th>Exam Steps</th>
<th>Fistula (Normal)</th>
<th>Graft (Normal)</th>
<th>Flow-related Dysfunction or Poor Maturation (Abnormal)</th>
<th>Infection, Steal Syndrome, or Aneurysm/Pseudoaneurysm* (Abnormal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Look</td>
<td>Well-developed main venous outflow, no irregular/dilated areas or aneurysm formations, adequate areas of straight vein that can be used for 2-needle, rope-ladder cannulation</td>
<td>Uniform-sized graft in a loop or straight configuration</td>
<td>AVF with poor maturation—multiple venous outflow veins (accessory veins), poorly defined cannulation areas</td>
<td>Infection: Redness, swelling, induration, drainage, or pus</td>
</tr>
<tr>
<td></td>
<td>Vessel collapses when arm is elevated above head</td>
<td>No irregular areas or aneurysm or seroma formations with organized site rotation used for cannulation</td>
<td>AVF: Stenosis can occur in artery or any venous outflow vein</td>
<td>Steal syndrome: Extremity/hand discoloration, skin ulceration due to poor arterial blood flow to the hand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Look for a narrowing of the outflow vein, abnormal pulsations, or aneurysm formations</td>
<td>Check nail beds, fingers and hand for unusual skin changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AVF or AVG: Dilated neck veins or surface collateral veins in the arm or neck above the vascular access</td>
<td>Aneurysm: Abnormal areas of dilatation with overlying skin thinning</td>
</tr>
</tbody>
</table>

Table 13.2. Clinical Indicators (Signs and Symptoms) Suggesting Underlying Clinically Significant Lesions During Access Monitoring

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Clinical Indicators</th>
</tr>
</thead>
</table>
| Physical examination or check | - Ipsilateral extremity edema
- Alterations in the pulse, with a weak or resistant pulse, difficult to compress, in the area of stenosis
- Abnormal thrill (weak and/or discontinuous) with only a systolic component in the region of stenosis
- Abnormal bruit (high pitched with a systolic component in the area of stenosis)
- Failure of the fistula to collapse when the arm is elevated (outflow stenosis) and lack of pulse augmentation (inflow stenosis)
- Excessive collapse of the venous segment upon arm elevation |
| Dialysis | - New difficulty with cannulation when previously not a problem
- Aspiration of clots
- Inability to achieve the target dialysis blood flow
- Prolonged bleeding beyond usual for that patient from the needle puncture sites for 3 consecutive dialysis sessions
- Unexplained (>0.2 units) decrease in the delivered dialysis dose (Kt/V) on a constant dialysis prescription without prolongation of dialysis duration |

Abbreviations: AVF, arteriovenous fistula; AVG, arteriovenous graft.
Also see Guidelines 16 through 19 for specific complications.
AV Fistula or AV Graft: Delivered Blood Flow Protocol

Measure Delivered Blood Flow Rate
With the bloodlines configured as normally used (document configuration), measure flow. Transonic Delivered Blood Flow Rate (Qb) is within 0-10% of the hemodialysis machine’s set blood pump speed or delivery flow rate.*

YES

Transonic Delivered Blood Flow Rate (Qb) is within 0-10% of the Hemodialysis Machine’s Set Blood Pump Speed or Delivery Flow Reading.
True Delivered Blood Flow correlates with the Hemodialysis machine’s setting.
Proceed to Recirculation Measurement

NO

The discrepancy between Transonic’s Delivered Blood Flow Rate (Qb) and the Hemodialysis Machine’s Set Blood Pump speed is >10% or Delivery Flow Reading* is >10%.
Turn pump speed to 200 mL/min and repeat the blood flow measurement.

YES

Transonic Delivered Blood Flow rate (Qb) is within 0-10% of the Hemodialysis Machine’s Set or Delivered Flow Reading.
True Delivered Blood Flow correlates with the Hemodialysis machine’s setting. The previous deviations at high pump settings could be due to needle size, and/or site of needle placement.
Proceed to Recirculation Measurement

NO

Transonic Delivered Blood Flow Rate (Qb) Does Not Agree with the Hemodialysis Machine’s Blood Pump Speed Setting at 200 mL/min.
• Verify correct bloodline was selected from the tubing list.
 • Verify proper sensor placement and coupling.
 • Check for kinking of lines.
 • Verify correct needle placement.
• Verify the dialysis blood pump is correctly calibrated.

*Some Hemodialysis Machines display both a Set Blood Pump Speed and Delivery Flow Reading. If both readings are displayed on your Hemodialysis machine, use the Delivery Flow Reading.
Recirculation Protocol: AV Fistulas & Grafts

Perform Initial Recirculation Measurement

YES: 0% Recirculation

Proceed to Access Flow Measurement

NO: > 0% Recirculation

Perform Second Recirculation Measurement

Evaluate access for inadvertent line reversal, if suspected. Reverse blood lines at needle tubing connection.

Perform a Reversed Line Recirculation Measurement

0% Recirculation

Lines are now in conventional position for dialysis, but were reversed for initial measurement.

> 0% Recirculation

Is reversed line Recirc > or < than initial Recirc?

0% Recirculation

Lines are now reversed, initial measurements were made with lines in conventional position.

Lines are now in conventional position for dialysis, but were reversed for initial measurement.

Document Correct Line Placement & Direction of Access Flow
Optimizing HD Adequacy in Catheters

Step 1:

Measure Delivered Blood Flow Rate
With the bloodlines configured as normally used (document configuration), measure flow. Transonic Delivered Blood Flow Rate (Qb) is within 0-10% of the hemodialysis machine’s set blood pump speed or delivery flow rate.*

YES

NO

Transonic Delivered Blood Flow Rate (Qb) is within 0-10% of the Hemodialysis Machine’s Set or delivery flow reading*
Current blood pump setting is maximizing the Delivered Blood Flow with the current catheter to bloodline configuration
Proceed to Recirculation Measurement

Transonic Delivered Blood Flow Rate (Qb) is >10% Lower than the Hemodialysis Machine’s Set Blood Pump Speed or Delivery Flow Reading*
Only proceed if both catheter lumens had blood return with treatment initiation.
Using aseptic technique, reverse the catheter configuration by reversing the bloodlines to the opposite lumens of the catheter used for the initial measurement. Document configuration.
Repeat the blood flow measurement.

YES

NO

Transonic Delivered Blood Flow Rate (Qb) is within 0-10% of Hemodialysis Machine’s Set, or Delivery Flow reading*
Current blood pump setting is maximizing the Delivered Blood Flow with the current catheter to bloodline configuration
Proceed to Recirculation Measurement

Transonic Delivered Blood Flow Rate (Qb) is 10% Lower than the Hemodialysis Machine’s Set Blood Pump Speed
Carefully document measurement and catheter configurations.
Proceed to recirculation measurements with both catheter configurations.
Escalate the results of the findings to the nephrologist for possible catheter evaluation or prescription adjustment to address catheter dysfunction.

*Some Hemodialysis machines display both a Set Blood Pump Speed and Delivery Flow Reading. If both readings are displayed on your Hemodialysis machine, use the Delivery Flow Reading.

Catheter Configurations:
- Normal Configuration: Arterial Catheter Hub to Arterial Bloodline + Venous Catheter Hub to Venous Bloodline
- Reverse Configuration: Arterial Catheter Hub to Venous Bloodline + Venous Catheter Hub to Arterial Catheter Hub
Optimizing HD Adequacy in Catheters

Step 2:

Check Recirculation
With the bloodlines configured from Step One with maximized Delivered Blood Flow Rate,

Measure Recirculation
Recirculation is within 0 - 10%

NO

Recirculation is Greater than 10%
Only proceed if both catheter lumens had blood return with treatment initiation.
Using aseptic technique, reverse the catheter configuration by reversing blood-lines to the opposite lumens of the catheter used for the initial measurement.

Repeat Recirculation Measurement

NO

Recirculation is Greater than 10%
Carefully document measurement and catheter configurations.
Escalate the results of the findings to the nephrologist for possible catheter evaluation or prescription adjustment to address catheter dysfunction.

YES

Recirculation is within 0-10%
Current blood pump setting is maximizing Delivered Blood Flow with the current catheter to bloodline configuration.

YES

Recirculation is within 0-10%
Current blood pump setting is maximizing Delivered Blood Flow with the current catheter to bloodline configuration.
Optimizing HD Adequacy in Catheters

For Use with Hemodialysis machines that have Compensated Blood Flow Rate Capabilities

Step 1:

Measure Delivered Blood Flow Rate
With the bloodlines configured as normally used (document configuration), measure flow.
Transonic Delivered Blood Flow Rate (Qb) is higher than the set blood pump speed or within 0-10% lower than the set blood pump speed.
NOTE: Both higher and lower differences are displayed in red on the Transonic screen.

YES

Transonic Delivered Blood Flow Rate (Qb) is Higher than the Set Blood Pump Speed or is within 0-10% Lower than the Set Blood Pump Speed.
Current blood pump setting is maximizing the Delivered Blood Flow with the current catheter to bloodline configuration
Proceed to Recirculation Measurement

NO

Transonic Delivered Blood Flow Rate (Qb) is >10% Lower than the Set Blood Pump Speed.
Only proceed if both catheter lumens had blood return with treatment initiation.
Using aseptic technique, reverse the catheter configuration by reversing bloodlines to the opposite lumens of the catheter used for the initial measurement. Document configuration.
Repeat the blood flow measurement.

YES

Transonic Delivered Blood Flow Rate (Qb) is Higher than the Set Blood Pump Speed or is within 0-10% Lower than the Set Blood Pump Speed.
Current blood pump setting is maximizing the Delivered Blood Flow with the current catheter to bloodline configuration
Proceed to Recirculation Measurement

NO

Transonic Delivered Blood Flow Rate (Qb) is 10% Lower than the Set Blood Pump Speed
Carefully document measurement and catheter configurations.
Proceed to recirculation measurements with both catheter configurations.
Escalate the results of the findings to the nephrologist for possible catheter evaluation or prescription adjustment to address catheter dysfunction.

Catheter Configurations:
- Normal Configuration: Arterial Catheter Hub to Arterial Bloodline + Venous Catheter Hub to Venous Bloodline
- Reverse Configuration: Arterial Catheter Hub to Venous Bloodline + Venous Catheter Hub to Arterial Catheter Hub
Optimizing HD Adequacy in Catheters cont.

For Use with Hemodialysis machines that have Compensated Blood Flow Rate Capabilities

Step 2:

Check Recirculation
With the bloodlines configured from Step One with maximized Delivered Blood Flow Rate,

Measure Recirculation
Recirculation is within 0 - 10%

YES
Recirculation is within 0-10%
Current blood pump setting is maximizing Delivered Blood Flow with the current catheter to bloodline configuration.

NO
Recirculation is Greater than 10%
Only proceed if both catheter lumens had blood return with treatment initiation.

Using aseptic technique, reverse the catheter configuration by reversing blood-lines to the opposite lumens of the catheter used for the initial measurement.

Repeat Recirculation Measurement

NO
Recirculation is Greater than 10%
Carefully document measurement and catheter configurations.

Escalate the results of the findings to the nephrologist for possible catheter evaluation or prescription adjustment to address catheter dysfunction.

YES
Recirculation is within 0-10%
Current blood pump setting is maximizing Delivered Blood Flow with the current catheter to bloodline configuration.
Hemodynamics of access flow measurement with lines reversed by Krivitski Method. Line reversal relates an artificial recirculation loop with mining site at the arterial side of the access.