

1 High-Performance Microservices Using Java

Technology Whitepaper

High-Performance

Microservices Using Java

2 High-Performance Microservices Using Java

To help understand Microservices a review of the

most well-known standards and technologies is

useful.

RPC: Remote Procedure Calls. RPC implements the

most basic form of distributed computing, allowing an

application to execute a procedure in a different

address space. The coding is the same as for a local

procedure without the developer coding the details of

the remote interaction. RPC allows for calls to be made

on the same machine or across a network.

CORBA: The Common Object Request Broker

Architecture. With a shift to the use of Object Oriented

(OO) programming languages, Remote Method

Invocation (RMI) replaced RPC, since in OO

programming methods associate behavior with

objects. CORBA was designed to facilitate

communication between systems that were deployed

on diverse platforms. It enabled collaboration between

objects running on different operating systems and

hardware as well as those written in different

languages. Because CORBA had such great flexibility

its use was somewhat more complex, requiring the

generation of stub and skeleton code as well as

interaction through an Object Request Broker (ORB)

DCOM: Distributed Common Object Model is a

Microsoft proprietary technology and was a direct

competitor to CORBA. Both CORBA and DCOM

suffered from difficulties related to the requirement of

specific firewall configuration, which partially drove the

development of web services.

Java EE: Servlets and Enterprise Java Beans (EJBs).

Java EE was designed to separate the deployment

details of an enterprise application from the

implementation (making it platform neutral). This

extends to being able to locate components (servlets

and EJBs) at runtime on different machines through the

use of the Java Naming and Directory Interface (JNDI).

Resources like database, transaction and security

details are provided at runtime through dependency

injection.

XML-RPC: This is RPC using XML (eXtensible Markup

Language) as an encoding scheme for messages and

uses HTTP to transfer the messages. XML is an

encoding scheme that is both human and machine-

readable. Although this solved some of the problems

of systems like DCOM and CORBA, it is inefficient in

terms of how much data needs to be transmitted using

approximately four times as many bytes as plain XML,

which is also more verbose than more modern

encoding schemes such as JavaScript Object Notation

(JSON).

SOAP: The Simple Object Access Protocol. As more

business level functionality was added to XML-RPC, this

A Brief History of Microservices

Although microservices as a term and a set of

technologies are relatively new, its roots can be traced

all the way back to the development of distributed

systems in the 1960s and 70s. The concept of

distributed computing is to divide an application into

a number of separate, concurrent processes that

communicate by message passing. Although this

sounds simple, there are many challenges that make it

hard to implement such systems in a reliable way

using a clean design.

Many projects, technologies and standards have

been developed over the last fifty years whose goals

have been to solve the problem of simplifying

development of distributed systems. Many of the core

concepts of these technologies form the basis of

Microservices.

3 High-Performance Microservices Using Java

developed into SOAP, which is one of the core

protocols for what we know as Web Services. Other

related protocols like the Web Service Definition

Language (WSDL) allowed developers to connect to

new services programmatically without the need to

write specific code. These type of web services were

popular initially but have been superseded by the

Representational State Transfer (REST) approach. One

of the biggest advantages of web services is the use of

HTTP, which allows all communications to happen via

IP port 80 thus eliminating many of the problems

associated with distributed systems needing additional

firewall configuration.

SOA: Service Oriented Architecture. This is the most

recent approach to providing an architecture for the

development of distributed systems using reusable

components. The basic ideas are similar to previous

approaches but with more of a business focus.

Services logically represent a business activity with a

specified outcome. They are self-contained appearing

as a black-box to consumers, possibly encapsulating

other services. SOA relies on standardized service

contracts to define how services are called and the

format of the data produced in response. There is also

the concept of a service registry or repository which

clients can use to locate services.

1. The Cloud: The last few years have seen a massive

move away from deploying applications in corporate

data centres to hosting those applications in a

commercial provider of computing resources such as

Microsoft’s Azure or Amazon Web Services (AWS). The

most significant advantage of using the cloud is the

flexibility it provides. Enterprises only need pay for the

resources they use, as peaks and troughs of demand

arise resources can be provisioned or reclaimed by the

cloud provider as required. A traditional data center

requires significant initial investment (Capex) followed

by continued costs for running and maintenance

(Opex). Often a datacenter must be designed to deal

with a high peak load meaning many machines sit idle

during normal load levels that are much lower.

Designing software to run in the cloud requires a

different, more flexible approach due to the need to

adapt quickly to changing loads.

2. Agile Design Methodologies: The process of

software development has long used what is referred

to as the waterfall model. This is a sequential, and most

importantly, non-iterative design process. Agile

software development describes a set of values and

principles under which requirements and solutions

evolve through collaborative effort. It advocates

adaptive planning, evolutionary development, early

delivery, and continuous improvement, and it

encourages rapid and flexible response to change.

With a shift to deployment in the cloud an agile

approach to development enables the benefits of

deployment to the cloud to be leveraged effectively.

3. DevOps: Traditionally, the process of developing

software has been distinct from that of deploying the

software to production systems. This separation leads

to a lack of understanding by the groups responsible

for each area about the issues affecting the other.

DevOps is a software development and delivery

process that emphasizes communication and

collaboration between product management, software

development and operations professionals, requiring

close alignment with business objectives. The merging

of roles between development and administration is a

logical progression when moving to deployment in the

cloud and the use of agile software development.

Why Have Microservices Risen in Popularity?

Given that there have been many attempts to simplify

the development of distributed systems let’s look at

why Microservices have risen so quickly in popularity.

Essentially there are four areas of software development

that have created the perfect storm for Microservices to

become successful:

4 High-Performance Microservices Using Java

4. Continuous Integration and Continuous Deployment:

To support deployment in the cloud when using agile

software development and the DevOps process

requires a different approach to the delivery of

software and new tools to support it. Continuous

integration involves merging all developer working

versions to a shared central copy several times a day,

which enables rapid inclusion of modifications and

enhancements. Continuous deployment is an

approach where development teams produce software

in short cycles, ensuring that the software can be

reliably released at any time. It aims at building,

testing, and releasing software faster and more

frequently. This approach helps reduce the cost, time,

and risk of delivering changes by allowing for more

incremental updates to applications in production. A

straightforward and repeatable deployment process is

important for continuous delivery, which is where

open-source tools like Jenkins play an important role.

The Fundamentals of Microservices

The previous section described the waterfall software

development methodology, which is relatively

inflexible and does not adapt to changing

requirements. The end products of this type of

approach are monolithic applications.

A monolithic application is self-contained and

independent from other applications. The design

philosophy assumes that an application is responsible

not just for a particular step of a task, but can perform

every step needed to complete that task. The

advantage of a monolithic application is its

independence, meaning it can be deployed as a single

unit. However, this independence is often more of a

hindrance than a help regarding flexibility. Even the

smallest change to the application requires the whole

application to be rebuilt and redeployed.

The Microservice architecture takes the approach of

splitting a monolithic application into numerous

component tasks. The name, Microservices, can be a

bit misleading as the use of the prefix micro (from the

Greek word for small) would indicate that each service

is, by definition, small. This is not necessarily the case.

The fundamental idea of a Microservice is about doing

one thing and doing that one thing well. This is based

on the same philosophy used in the design of the UNIX

operating system, which has numerous commands that

can be linked together using pipes to transfer the

output of one command to the input of another.

Cassandra is a NoSQL database written in many

thousands of lines of code but can be considered as a

Microservice when composing an application because

it only deals with one thing: persisting data.

The micro-services architecture is inherently

distributed, which can lead to problems not

exhibited in a monolithic application. Individual

services are orchestrated to handle requests. When a

service is invoked synchronously by another, the reality

is that the service being invoked is unavailable or is

exhibiting such high latency that it is essentially

unusable. Limited resources, such as threads, might be

consumed by the caller while waiting for the invoked

service to respond. This could lead to resource

exhaustion, which would make the calling service

unable to handle other requests. When one service

fails, it can potentially cascade to other services

throughout the application.

To alleviate this problem, the circuit-breaker pattern is

commonly used.

When one service invokes another service it does so

via a proxy rather than directly. The proxy works in a

similar way to an electrical circuit breaker. When the

number of consecutive invocation failures exceeds a

The combination of these four concepts has helped

drive developers to use Microservices.

5 High-Performance Microservices Using Java

threshold, the circuit breaker trips, and for the duration

of a timeout period all attempts to invoke the remote

service will fail immediately. After the timeout has

expired, the circuit breaker allows a limited number of

requests to pass through. If those requests succeed the

circuit breaker resumes normal operation. If failures

continue, the timeout period is restarted.

For the rest of this document we will shorten

Microservice to just service unless making a specific

point about Microservices.

How complete applications are constructed from

individual services and how services are orchestrated

is beyond the scope of this document, but there are

popular technologies like Kubernetes and Mesos that

address these requirements.

Microservices and Virtualization

To understand Microservices we need to understand

how they integrate with virtualization. Without using

any virtualization, an application runs on what is

sometimes referred to as a bare metal server. As the

diagram below shows, the application, its libraries

and possible runtime (like the JVM) are separated

from the hardware by the operating system (OS).

The operating system’s role is to abstract away the

complexities of how to interact with specific hardware

at the lowest level. This takes the form of system calls,

which provide an API that allows developers to

perform functions like opening a file (which may

provide access to a device rather than data), reading

and writing data to that file as well as more complex

calls like those used to control specific features (this is

called an ioctl call, short for input-output control).

Today’s server-class machines typically have multiple

sockets for CPUs and multiple cores in those CPUs as

well as many gigabytes (or even terabytes) of RAM.

They also frequently have multiple network interfaces

and connect to external disk arrays for storage. To

utilize all these resources efficiently, it is often desirable

to run multiple OS instances on the same physical

server. This enables better control of resources, and

more importantly, isolation of each OS instance from

all others. If a problem occurs in one OS instance, it

does not affect the others. The diagram following

shows how a hypervisor fits into the other parts of

the system.

Breaking a monolithic application into discreet services

requires well-defined interfaces between the individual

services. Using Microservices deliver a number of distinct

advantages:

Each service can be developed by an independent team.

Domain experts can be recruited to work on specific

services, either in isolation or working co-operatively with

other teams. This also leads to the ability to select the best

technology to address the needs of that service rather than

considering the application as a whole.

The implementation of a service can be changed

independently of the complete application. Although the

agreed interface cannot be changed without breaking

existing applications, it can be extended to enable new

clients to take advantage of new functionality. This could

extend to completely rewriting the service or using new

libraries and frameworks to improve its performance.

The Microservice architecture is easy to deploy into the

cloud. Because the services are independent, it does not

matter where they are deployed, meaning they do not need

to be collocated on the same server. They can easily be

distributed across numerous machines, which is very much in

keeping with the ideas of distributed computing discussed

at the start of the document.

Varying loads are easy to cope with. A particular service will

only be able to cope with a certain transaction load. When

this load is exceeded, rather than needing to move the

service to a bigger, more powerful server, more instances of

the service can be started and clients redirected to these

new instances as required. Load balancing and clustering

are built into the Microservices architecture.

App A App B

Libs & Runtime

OS

Hardware

6 High-Performance Microservices Using Java

The server can either run the hypervisor directly on

the hardware or it can use a host OS to support the

hypervisor. The hypervisor provides an interface that,

to the guest operating systems, make it appear that

they are interacting directly with physical hardware.

The hypervisor and host OS can impose resource

restrictions (so one guest OS does not degrade the

performance of others by using all the available

resources) and impose the necessary isolation

between guest operating systems.

The diagram below shows how a Microservice

container fits into the picture of virtualization using

the popular Docker container engine.

The container looks like it provides the same role as a

hypervisor but without any additional guest operating

systems. The key aspect of the container is that it does

not virtualize an operating system but isolates a

process on the host OS from other processes, giving it

many of the same advantages without the need to

install a new OS. Containers can be used in

conjunction with virtualization, as shown:

The diagram below shows how Docker images

relate to a container

At the bottom, there is the host operating system

kernel, and the container relies on the system call

interface being consistent across all platforms that

support these containers. In the case of Docker, this

uses a set of Linux system calls, which will work across

all modern distributions. Mac OS X is built on a UNIX

style operating system (BSD), so some additional code

is required to make it compatible. On Windows, which

is not at all UNIX-like, a complete emulation system is

required. The container interacts with the operating

system directly (via system calls) and with the Docker

container engine to provide lifecycle management,

administration and so on.

App A App B

Hypervisor

App C

Libs & Runtime Libs & Runtime

Guest OS Guest OS

Host OS

Hardware

App A App B App C

Libs &
Runtime A

Libs &
Runtime B

Libs &
Runtime C

Docker Container Engine

Host OS

Hardware

Service A Service B

Hypervisor

Service C

Container Engine Container Engine

Host OS

Hardware

Libs & Runtime Libs & Runtime

Guest OS Guest OS

Libs & Runtime

Layer 3, e.g. Tomcat

Layer 2, e.g. JRE

Layer 1, e.g. Ubuntu OS

Writeable Layer

Docker Container Engine

Host OS Kemel

Hardware

Layer 4, e.g. Servlets

Container

Image

System call interface

7 High-Performance Microservices Using Java

The container itself consists of several layers that build

up the image in which the application is going to run.

In this example, there is an Ubuntu layer to provide a

consistent set of OS services above those of the system

calls. This will be things like device files, daemons, etc.

Above that there is a Java Runtime Environment layer

(JRE). This demonstrates one of the big advantages of

containers. We may well have microservices that have

been developed using different versions of Java.

By putting the JRE inside the container, this

immediately eliminates the issue of whether the correct

version of the JRE is installed on the machine the

application is being deployed to. Above the JRE there

is a Tomcat layer. Again, this is included in the

container so that the need to have a specific version of

Tomcat installed on the target machine is not

necessary. The final layer of the Docker image is the

servlets that will provide the functionality of the service.

A key point here is that all the layers in the image are

read-only. Nothing can be changed in these layers.

This provides a significant advantage when multiple

services are running on the same machine. Rather than

each service needing to have its own copy of the

Ubuntu, JRE, Tomcat and Servlet layer they can all

share a single copy.

The final layer in the container, which is not part of the

image, is the Writeable layer. If any part of a layer in the

image needs to be modified a copy of that part is taken

and placed in the Writeable layer. The container maps

read and write operations to the Writeable layer giving

the illusion that the lower layers can be modified.

As can be seen, containers provide a very useful way to

deploy precisely defined services isolated from one

another with strict control over their resource utilization

when in operation.

Java-Based Microservices

Java is very complementary to the Microservice

architecture. There are three ways that Java can be

used to provide Microservices:

1. Container-less Services: This approach provides

the minimum level of isolation between services. The

service is delivered as a single JAR file that contains all

the code of that particular service. The service is run

using a single, system-wide JVM, which means that all

services must be aligned to the same version of the

JVM. Similarly, all services typically make use of

system-wide copies of libraries and frameworks they

require with the same implication of alignment on

The Docker container relies on two features of the

Linux kernel to enable it to isolate containers from one

another:

Namespaces are a feature that isolates and virtualizes

system resources used by a collection of processes.

Currently, six namespaces are supported: pid (processes),

net (networking), mnt (mounted filesystems), uts (hostname),

ipc (inter-process communication) and user (user and group

ids). A container is bound to a specific namespace so that it is

isolated from the namespaces used for other containers. By

doing this, the service running in the container will only see

the resources configured for that namespace.

The service will only be able to view parts of the file system, a

subset of OS processes, certain network interfaces and so on.

Cgroups (Control Groups:) is a feature that limits, accounts

for, and isolates the resources usage (CPU, memory, disk I/O,

network, etc.) of a collection of processes. A container can be

run within a cgroup so that it only has access to a portion of

the available resources of the physical machine. When

running multiple containers on a machine, this can be very

useful for dividing the available resources in a fair and

equitable way. If one container develops a fault that would

normally cause it to starve other processes of resources, the

cgroup implementation prevents the from happening.

8 High-Performance Microservices Using Java

specific versions. It is possible (although more complex

for deployment and management) to use different

versions of libraries and frameworks.

2. Self-Contained Services: These services are similar

to container-less services. These services will also use

a system-wide JVM requiring alignment on a specific

version. However, any libraries that are required by the

service are included in the JAR eliminating issues of

version mismatch. However, this increases the size of

JAR files since each service must include all the

libraries it uses regardless of whether these are shared

with other services. There are several technologies

available to enable self-contained services such as

Spring Boot, DropWizard and WildFly Swarm; all of

which simplify the process of developing and

delivering these types of services.

3. In-Container Services: This is the most flexible

approach to delivering Java-based Microservices.

Containers eliminate the problems of how to manage

multiple versions of the Java runtime on a single

machine and ensure that each service uses the version

of the runtime and libraries required by that service.

To the OS, the JVM is just another process and is not

treated differently in respect of namespaces and

cgroups. Deploying services in Docker images greatly

simplifies the issues of JVM and library versions. By

using read-only layers for these components minimizes

storage by enabling sharing between different

Microservices.

The use of containers is the most popular way to

deploy Java-based Microservices because of the

advantages it provides.

JVM Challenges With Microservices

To deploy Java-based Microservices requires some

careful consideration of how the JVM works in this

type of environment. Three specific things need to be

addressed:

1. Responsiveness under load: Ideally as the load on

the service increases there should be no degradation

in performance of that service. That is, after all, one of

the benefits of using a Microservice architecture and

deploying into the cloud. New service instances can

be started, ensuring that existing instances deliver

consistent performance as load. As the load on an

instance of a service increases, this will typically result

in more object creation and an increased load on the

garbage collector, which must be accounted for in the

service deployment configuration.

2. Supporting multiple JVM instances on the same

physical hardware. This is not the issue of how to

manage multiple versions of the Java runtime, but how

to deal with having multiple JVM processes running on

the same machine. The ability to do this in a way that

optimizes the use of resources is critical to being able

to scale services on a particular server.

3. How to add (“spin up”) new service instances

quickly and efficiently. A key feature of Microservices

is the elasticity they provide for handling varying levels

of workload. The need to start up new instances of

services as the load increases require those services

to be available and performing at their optimum level

as quickly as possible. A traditional JVM takes time

to warm-up as it analyses the bytecodes being used

and compiles frequently used methods into native

instructions.

To effectively deploy Java-based Microservices it is

essential to address all of the points above. Azul have

developed Azul Platform Prime, centered upon a JVM

that provides enhanced performance for many

categories of applications, one of which is

Microservices running inside containers.

9 High-Performance Microservices Using Java

Azul Platform Prime for Microservices

Azul is a company whose focus is purely on developing

JVMs. In this section, we’ll explain how Azul Platform

Prime is ideally suited to deliver better performance

and reduced cost for the deployment of Java-based

Microservices.

Azul Platform Prime is based on the open-source

OpenJDK source code, which is the reference

implementation for the Java SE standard. To deliver

better performance than traditional JVMs, parts of the

core JVM are replaced with alternative

implementations. Specifically, this includes the

memory management system and part of the Just in

Time (JIT) compilation system.

JVM Memory Management and C4

When a Java application is executed, memory

management is handled automatically by the JVM. The

JVM allocates space on the heap when a new object is

instantiated and reclaims that space when the

application no longer has any references to it. This is

the process of garbage collection (GC). The GC also

manages the heap, optimizing the availability of space

for new objects by periodically compacting the heap,

moving objects to make live data contiguous,

eliminating fragmentation. GC provides significant

advantages over languages like C and C++, which rely

on the programmer to explicitly deallocate space used

by the application. This explicit deallocation can be the

source of many application bugs, particularly in the

form of memory leaks or abrupt application

termination when the programmer tries to deallocate

an invalid or incorrect address.

However, in a traditional JVM, GC, while very useful,

also requires application threads to be paused to avoid

corruption of data as objects are moved during

compaction. This effect is two-fold: firstly, it introduces

pauses to an application while the GC performs its

work. The length of these pauses can be very long,

ranging from milliseconds to hours and the length is

directly proportional to the amount of memory

allocated to the heap, not how much data is in the

heap. Secondly, when these pauses occur

cannot be accurately predicted. This introduces non-

deterministic behavior to an application. In the context

of a Microservice, this could lead to clients of a service

incorrectly assuming that the service is no longer

available even though its JVM is just working on GC.

This may cause new service instances to be started,

further impacting performance when this is not

necessary.

Azul Platform Prime uses a different GC algorithm, the

Continuous Concurrent Compacting Collector (C4).

Unlike other commercial GC algorithms, application

threads can continue to operate whilst the GC is

performing its work (hence the concurrent part of the

name). Although other algorithms like Concurrent

Mark Sweep (CMS) and Garbage First (G1) perform

part of their work while application threads are running

other parts still require application threads to be

paused. Both these algorithms will fall back to a full

compacting collection cycle if they reach a point where

they are unable to meet the memory needs of the

application. This full compaction will require

application pause times proportional to the heap size.

C4 will not, under any circumstances, perform a full

compaction since it is never necessary. With C4

collection happens as a background task to the

application work resulting in an extremely low impact

on the application performance.

Unlike traditional collectors that require numerous

command line options that are difficult to configure

correctly C4 only needs the heap size to be set. C4

scales from 1Gb to 8Tb of heap space without

increasing application pause times.

 10

High-Performance Microservices Using Java

JIT Compilation

Java source code is compiled to bytecodes. Unlike

statically compiled languages like C and C++, these

bytecodes are not the instructions of the specific

platform on which the application will run. Bytecodes

are instructions for a virtual machine, in this case, the

Java Virtual Machine (JVM). When the JVM starts an

application, it has to interpret each bytecode,

converting it to the necessary native instructions and

operating system calls. This interpretation incurs

overhead, and the code will run at a much slower rate

than statically compiled code.

To eliminate this problem, the JVM profiles the code as

it interprets the bytecodes, keeping a count of how

many times groups of bytecodes are used and how

many times methods are called. This profiling data is

used by the JVM to identify hot spots in the code,

which can be compiled to native instructions using a

just in time (JIT) compiler. Over time the majority of

code executed by the application will be compiled but

the time it takes to get to this point is referred to as the

warm-up time of the application.

A traditional JVM employs two JIT compilers called C1

and C2 (sometimes referred to as client and server).

Each JIT has different characteristics, which govern

application performance. C1 is designed to compile

bytecodes quickly but with a lower level of code

optimization. This is well suited to short-lived

applications that need to warm-up quickly. C2,

conversely, takes longer to compile the code but

applies more optimizations in the code that it

generates. This is better suited to longer running

(typically server) type of applications where a warm-up

phase that may take several minutes is not an issue.

Since JDK 7 both JITs can be used for the same

application through tiered compilation. C1 is used

initially; C2 is used as the application runs for longer to

provide increased performance.

In Azul Platform Prime the C2 JIT has been replaced

with a new,improved version called Falcon. Falcon is

based on the open-source LLVM compiler project,

which is supported by numerous corporations and

individuals including Intel, NVidia, Apple and Sony.

This enables Falcon to take advantage of a much larger

range of contributions than from just Azul’s engineers.

Falcon is modular in its design allowing new

optimizations to be added easily, as they become

available. As an example, Falcon can optimise much

more complex code than C2 and apply vector-

processing optimizations to it. Through the use of

single instruction, multiple data (SIMD) instructions in

the most recent Intel processors (such as AVX 2 and

AVX512) code generated by Falcon can dramatically

improve the performance of certain loops. Overall the

effect is to deliver a higher level of application

performance.

ReadyNow!

The issue of application warm-up is exacerbated by the

fact that each time an application is started the JVM

has no knowledge of what might have happened

during previous executions. Each time the application

starts the JVM must go through the same profiling

phase, performing the same analysis and, most likely,

compiling the same sections of code. Clearly, this is not

the most efficient approach for an application that

needs to be frequently restarted.

11 High-Performance Microservices Using Java

An obvious way of solving this problem would be to

take a snapshot of the compiled code when the

application has reached a steady state and when all

necessary code has been compiled. When the

application is restarted this snapshot could be

reloaded, and the application could continue as if it

had not stopped (from a compilation point of view).

Unfortunately, things are not as simple as this (the

implementation of this would be far from simple, even

though the description makes it sound that way). The

definition of the JVM places restrictions on what can

happen when it starts, specifically in the area of class

loading and initialization. Several other issues make

this approach impractical.

Azul has addressed this problem through a technology

called ReadyNow! Using this, an application is started

in a production environment and allowed to run until it

is fully warmed up. At this point, a profile of the

application’s JIT status is recorded. This profile records

details of the classes that are currently loaded, classes

that are initialized, instruction profiling data (similar to

the data used by the JVM to decide which sections of

code to compile) and speculative optimization failures.

When the application is started again, the profile can

be used to have the JVM and JIT perform almost all the

work it would normally do during the warm-up phase

of the application; in this case, this can all happen

before the application starts executing code in the

main() method. This all but eliminates the warm-up

phase so the application can start running at very

nearly full speed when it starts.

As you can see, Azul Platform Prime offers

numerous advantages over a traditional JVM for

optimizing performance. Looking specifically at

Microservices, these features address all of the

issues highlighted in the previous section:

1. Responsiveness under load: The C4 collector will not

resort to a full stop-the-world compacting collection so,

even under heavy load; the performance of the JVM

memory management remains the same. Where

services become memory constrained, it is simple to

increase the allocated heap space to solve potential

out of memory problems without affecting

performance.

The significant impact of the reduced and consistent

latency produced by the C4 algorithm applies to

circuit-breakers. There is a substantial reduction in how

often circuit-breakers need to be activated in a system

and the long timeouts before they reset.

2. Supporting multiple JVM instances on the same

machine: Azul Platform Prime works in conjunction with

the Linux operating system to optimize the memory

management sub-system. The Azul Platform Prime

System Tools will reserve an area of physical memory

(the size of which is configurable), which is shared

between all instances of the Azul Platform Prime VM

running on that machine. The Azul Platform Prime

System Tools also provides greater performance for

Azul Platform Prime by reusing memory pages that are

already in cache (hot pages), unlike a traditional JVM

that frequently gets cold pages from the OS as it

allocates new objects on the heap.

3. Spinning up new server instances quickly and

efficiently: The ReadyNow! feature of Azul Platform

Prime is ideally suited to enabling new service

instances to start quickly and provide a full level of

performance straight away.

Azul has addressed this problem through a technology

called ReadyNow! Using this, an application is started

in a production environment and allowed to run until

it is fully warmed up. At this point, a profile of the

application’s JIT status is recorded.

12 High-Performance Microservices Using Java

Conclusions

It is clear that the direction of software development is

primarily moving to the cloud and using Microservices

as a way to do this in a flexible, scalable way.

Java, as the most popular programming language on

the planet, is an obvious choice for developing

Microservices. Java Microservices also provide several

advantages over those developed in other languages.

However, using a traditional JVM, several deployment

issues must be carefully considered when choosing an

application architecture.

Azul Platform Prime includes a modern JVM that uses

different internal algorithms for Garbage Collection

and part of the JIT compilation system. When

combined with the Ready-Now! technology to

effectively eliminate the warm-up phase of

Microservice performance, Azul Platform Prime

becomes a clear choice for use in modern Java

application development on microservices.

Azul Platform Prime can be tried free for 30 days

and is available at www.azul.com/zingtrial

Contact Azul

To discover how Azul Platform Prime can improve

scalability, consistency and performance of all your

Java deployments, contact:

385 Moffett Park Drive, Suite 115

Sunnyvale, CA 94089 USA

 +1.650.230.6500

www.azul.com

info@azul.com

http://www.azul.com/zingtrial
http://www.azul.com/

	Technology Whitepaper
	To help understand Microservices a review of the most well-known standards and technologies is useful.
	A Brief History of Microservices
	Why Have Microservices Risen in Popularity?
	The Fundamentals of Microservices
	The combination of these four concepts has helped drive developers to use Microservices.
	Microservices and Virtualization
	Breaking a monolithic application into discreet services requires well-defined interfaces between the individual services. Using Microservices deliver a number of distinct advantages:
	Java-Based Microservices
	The Docker container relies on two features of the
	Linux kernel to enable it to isolate containers from one
	another:
	JVM Challenges With Microservices
	2. Supporting multiple JVM instances on the same
	physical hardware. This is not the issue of how to
	3. How to add (“spin up”) new service instances
	quickly and efficiently. A key feature of Microservices

	Azul Platform Prime for Microservices
	JVM Memory Management and C4
	JIT Compilation
	ReadyNow!
	Azul has addressed this problem through a technology called ReadyNow! Using this, an application is started in a production environment and allowed to run until it is fully warmed up. At this point, a profile of the application’s JIT status is recorded.
	Conclusions
	Azul Platform Prime can be tried free for 30 days and is available at www.azul.com/zingtrial

