Statgraphics 19[®]

Analyzing Data from Stability Studies

Stability Studies

- Model how a product or component of a product varies with time
- Used to establish a shelf life or retest period for the product or component
- Common use is to model the degradation of a drug product or substance

Sample Data

Data file: shelf life study.sgd

- Dependent variable: percent of label-claimed active ingredient strength of a drug
- Sample size: measurements made on 5 batches
- Sampling times: 0,3,6,9,12,18,24,36,48 months after production
- Lower specification limit: 90%

Plot of Sample Data

Plot of Drug% vs Month

Basic Approach to Establishing Shelf Life

- Model the degradation of drug strength over time. A linear or nonlinear model may be used.
- Create a lower prediction limit for a specified quantile of the distribution of observed measurements at each point in time. Often P50 (mean) is used.
- Find the intersection of the prediction limits with the specification limit.
- If there are significant differences between batches (assuming fixed effects), create prediction limits for each batch and select the minimum prediction limit at each point in time.

Data Input Dialog Box

Stability Study		×	
Month Batch Drug%	Response:		
	Time:		
	(Batch): Batch		
	(LSL:) (USL):		
Sort column names	(Select:)		1.111.1
OK Cance	el Delete Transform Help		

Analysis Options Dialog Box

Stability Study Options X Shelf life **Transformation** Percentile: 💿 None 50.0Square root \mathbb{Z} Confidence level: Logarithm \mathbb{C} 95.0 Reciprocal \mathbb{Z} \mathbb{C} Box-Cox \odot Batches O Power: (\mathbf{E}) No batch effects 1.0Main effects only \mathbf{C} O Alternative model: Main effects and interaction Linear Ŧ Treat as random effects OK. Cancel Help

Tables and Graphs

Tables and Graphs K TABLES GRAPHS Analysis Summary Shelf Life Plot Shelf Life Estimates Observed versus Predicted Unusual Residuals Residuals versus X Influential Points Residuals versus Predicted Comparison of Alternative Models Residuals versus Row Number Residual Probability Plot			
TABLES GRAPHS OK Analysis Summary Shelf Life Plot Cancel Shelf Life Estimates Observed versus Predicted All Unusual Residuals Residuals versus X All Influential Points Residuals versus Predicted Store Comparison of Alternative Models Residuals versus Row Number Help Residual Probability Plot Internative Models Internative Models	Tables and Graphs		×
Shelf Life Estimates Observed versus Predicted Cancel Unusual Residuals Residuals versus X All Influential Points Residuals versus Predicted Store Comparison of Alternative Models Residuals versus Row Number Help Residual Probability Plot Store Store	TABLES Analysis Summary	GRAPHS Shelf Life Plot	ОК
Unusual Residuals Residuals versus X All Influential Points Residuals versus Predicted Store Comparison of Alternative Models Residuals versus Row Number Help Residual Probability Plot Help	Shelf Life Estimates	Observed versus Predicted	Cancel
Influential Points Residuals versus Predicted Store Comparison of Alternative Models Residuals versus Row Number Help Residual Probability Plot Help	Unusual Residuals	Residuals versus X	All
Comparison of Alternative Models Residuals versus Row Number Help Residual Probability Plot	Influential Points	Residuals versus Predicted	Store
Residual Probability Plot	Comparison of Alternative Models	Residuals versus Row Number	Help
		Residual Probability Plot	

Fitted Model

How should batches be handled?

Fixed batches

- Fit a model with different intercepts and slopes for each batch.
- Simplify the model if batch slopes and/or intercepts are not significantly different.
- Determine the shelf life for each batch and select the minimum shelf life as the final result.

Random batches

- Fit a model with additional variance components for batches and batch*time interactions.
- Remove batch*time interactions and/or batch components if not statistically significant.
- Determine a single shelf life based on the fitted model.

Tests for Fixed Batch Effects

Further ANOVA for Variables in the Order Fitted

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Month	205.467	1	205.467	667.09	0.0000
Batch	13.7174	4	3.42934	11.13	0.0000
Month*Batch	4.22242	4	1.0556	3.43	0.0182

- Month*Batch: tests whether slopes of the batches are significantly different from each other. FDA suggests using α = 0.25.
- **Batch:** tests whether intercepts of the batches are significantly different from each other.
- Use backward stepwise approach when deciding whether to remove terms.

Estimated Parameters

Regression Models

Batch	Intercept	Slope
1	99.8528	-0.155297
2	99.1239	-0.105497
3	99.2827	-0.160687
4	100.459	-0.132098
5	99.5435	-0.151586

Shelf Life Estimate

Shelf Life Estimates

Batch	Shelf life	Limit
1	52.4836	lower
2	67.6797	lower
3	47.7013	lower
4	64.5984	lower
5	51.8079	lower
Combined	47.7013	lower

Residuals versus X

Residual Plot

Residual Probability Plot

Residual Probability Plot

Comparison of Alternative Models

Model	R-Squared	Adj. R-squared
Reciprocal-Y	95.68%	94.57%
Exponential	95.55%	94.40%
Square root-Y	95.47%	94.31%
Linear	95.40%	94.21%
Squared-Y	95.23%	94.01%
Reciprocal-Y squared-X	88.63%	85.70%
Logarithmic-Y squared-X	88.09%	85.02%
Square root-Y squared-X	87.81%	84.68%
Squared-X	87.54%	84.34%
Squared-Y square root-X	87.19%	83.89%
Double squared	86.98%	83.64%
Square root-X	86.95%	83.60%
Double square root	86.83%	83.44%
Logarithmic-Y square root-X	86.71%	83.29%
Reciprocal-Y square root-X	86.45%	82.96%
Logarithmic-X	<no fit=""></no>	
Square root-Y logarithmic-X	<no fit=""></no>	
Multiplicative	<no fit=""></no>	
Reciprocal-Y logarithmic-X	<no fit=""></no>	
Squared-Y logarithmic-X	<no fit=""></no>	
Reciprocal-X	<no fit=""></no>	
Square root-Y reciprocal-X	<no fit=""></no>	
S-curve model	<no fit=""></no>	
Double reciprocal	<no fit=""></no>	
Squared-Y reciprocal-X	<no fit=""></no>	
Logistic	<no fit=""></no>	
Log probit	<no fit=""></no>	

Box-Cox Transformation

- Considers models in which Y^p is a linear function of X.
- Searches for the optimal value of *p*.
- In this case:

Transformation: BoxCox(-3.65) Terms in model: Month, Batch, Month*Batch

R-squared = 95.9686 percent R-squared (adjusted for d.f.) = 94.9319 percent

Box-Cox Model

Random Batch Effects Model

STATGRAPHICS.COM

Components of Variance

📲 Stability Study	/ - Drug%										×
Stability Study - Drug% Response variable: Drug% Time variable: Month Batch variable: Batch Lower specification limit: 90 Number of batches: 5 Batch type: random Number of complete cases: 45										^	
Model: linear											
Terms in model:	Month, Ba	atch, Mo	nth*Bato	ch							
Variance Components											
Source	Var	iance		% of Total		S.E.		Z	P-Value		
Batch	0.21	0933		40.7121% 0.0735% 59.2144%		0.196833		1.07164	0.1419		
Month*Batch	0.00	038068				0.000359685	1.05837	0.1449			
Error	0.30	6795				0.0727	727517	4.21701	0.0000		
Total	0.51	8108									
Model Coefficients											
Parameter	Estimat	е	Standa	ard Error	Df		T Statistic	P-Value			
Constant	99.6524	524 0.2406		81	4.337	68	414.044	0.0000			
Month	-0.14103	1033 0.0102		2876 4.3		4.33768 -13.709		0.0001	-		
Model Statistic	s							•			
Std. Error of Est. MAE			R-squared R-squa		ared (adjusted)						
0.55389 0.6		0.66417	78	95.16		95.05]		¥
<										>	

More Videos

Videos are available to learn more about each of the features in Statgraphics.

You'll find them at:

www.statgraphics.com/instructional_videos

Also check our website for upcoming webinars.

References

- Chow, S. (2007). *Statistical Design and Analysis of Stability Studies*.
- U.S. Department of Health and Human Services, Food and Drug Administration, (2003). Guidance for Industry, Q1A(R2) Stability Testing of New Drug Substances and Products.
- U.S. Department of Health and Human Services, Food and Drug Administration, (2004). *Guidance* for Industry, Q1E Evaluation of Stability Data.