## Coenzyme $Q_{10}$ supplementation reduces corticosteroids dosage in patients with bronchial asthma

Anna Gvozdjáková<sup>a,\*</sup>, Jarmila Kucharská<sup>a</sup>, Mária Bartkovjaková<sup>a</sup>, Katarína Gazdíková<sup>b</sup> and František Gazdík<sup>b</sup>

<sup>a</sup>Comenius University, Medical Faculty, Pharmacobiochemical Laboratory, Bratislava, Slovakia
<sup>b</sup>Research Base of Slovak Medical University, Institute of Preventive and Clinical Medicine, Bratislava,
Slovakia

Abstract. Bronchial asthma is a chronic inflammatory disease of respiratory system, with disturbances in the dynamic balance of oxidant-antioxidant capacity of the lungs. Long-term administration of corticosteroids has been shown to result in mitochondrial dysfunction and oxidative damage of mitochondrial and nuclear DNAs. We previously documented decreased coenzyme  $Q_{10}$  (Co $Q_{10}$ ) and  $\alpha$ -tocopherol concentrations in plasma and blood in corticosteroid-dependent bronchial asthma patients. In the present study we demonstrate that Co $Q_{10}$  supplementation reduces the dosage of corticosteroids in these patients.

Patients and methods: This was an open, cross-over, randomized clinical study with 41 bronchial asthma patients (13 males, 28 females), ages 25–50 years. All patients suffered from persistent mild to moderate asthma. The patients were divided into two groups, one group receiving standard antiasthmatic therapy and clinically stabilized, and the second group receiving, in addition, antioxidants consisting of  $CoQ_{10}$  as Q-Gel® (120 mg) + 400 mg  $\alpha$ -tocopherol + 250 mg vitamin C a day. The groups were crossed over at 16 weeks for a total duration of 32 weeks.

Results and conclusions: Data show that patients with corticosteroid-dependent bronchial asthma have low plasma  $CoQ_{10}$  concentrations that may contribute to their antioxidant imbalance and oxidative stress. A reduction in the dosage of corticosteroids required by the patients following antioxidant supplementation was observed, indicating lower incidence of potential adverse effects of the drugs, decreased oxidative stress. This study also demonstrates the significant uptake of  $CoQ_{10}$  by lung tissue in a rat model using hydrosoluble  $CoQ_{10}$  (Q-Gel<sup>®</sup>).

Keywords: Bronchial asthma, corticosteroids, coenzyme Q<sub>10</sub>, oxidative stress, DNA