
36

0

110

36

40

33.33

MICROSERVICES AND CONTAINERS IN PLAIN ENGLISH

EXECUTIVE’S GUIDE TO KUBERNETES

http://www.opsramp.com

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

1

The Executive’s Guide to Kubernetes

Kubernetes is emblematic of a movement in technology --

a movement away from monolithic architectures, towards

what’s known as microservices architecture, where services

are decoupled, isolated, and only as big as they absolutely

have to be. These individual microservices are deployed in

containers that are launched in seconds and may be termi-

nated only after minutes of usage.

Since none of this is visible to an end user, why go through

the work of unbundling and containerizing your monolith?

Simple: it’s easier to develop and maintain in nearly every

way. From executing upgrades, to allocating resources with

precision, to isolating performance issues, the advantages of

a microservices architecture over a monolithic one are vast.

In this guide, we’ll go over everything you need to know to be

an effective leader as your team tackles the process of building

out microservices. But first, let’s start with some basic ideas

you’ll see mentioned throughout all of these chapters.

INTRODUCTION

Key Terms & Concepts

 Containers: A standalone, executable package of software

that includes all necessary code and dependencies.

 Immutable Architecture: An infrastructure paradigm

where servers are never modified, only replaced.

 Infrastructure-as-Code: The practice of provisioning and

managing data center resources using humanly-readable

declarative definition files (e.g., YAML).

 Microservices: A series of independently deployable soft-

ware services that, together, make up an application.

 Vertical Scaling: Where you allocate more CPU or memo-

ry to your individual machines or containers.

 Horizontal Scaling: Where you add more machines or

containers to your load-balanced computing resource pool.

Putting it all Together

By decoupling your services and converting them into micro

services, you enable containerization for each individual ser-

vice. This containerization compartmentalizes any resource

needs, configuration needs, and performance issues for a

particular service--allowing your technical leadership to align

individual contributors with teams specialized to support a

unique tech stack best tailored to power that service. Once

containerized, your architecture can then become immutable

to ensure the stability of production environments while

also allowing for accurate and thorough testing of new

image configurations.

http://www.OpsRamp.com
http://www.opsramp.com

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

2TABLE OF CONTENTS

Each of the following chapters provides a deeper look into the concepts, best

practices, and challenges of transitioning to a Kubernetes-based containerized set

of microservices.

CHAPTER 1: Comparing Containers
to Virtual Machines

Learn why containers are more lightweight, faster to deploy, and

easy to terminate when compared to virtual machines.

CHAPTER 2: Benefits of
Microservice-Based
Architecture

Get some guidance on how to prepare your organization for success

when converting from monolithic- to microservice-based architecture.

CHAPTER 3: Reasons to Use
Immutable Architecture
Discover why mutable architecture is more vulnerable to

performance issues than immutable architecture and how

you can employ infrastructure-as-code methodologies and

tools to easily manage your servers.

CHAPTER 4: Why Containers are
Challenging without
Kubernetes

Understand the challenges unique to containerization

regarding deployment, lifecycle management, network

configuration, and scaling -- and how Kuberenetes solves them.

CHAPTER 5: History of Kubernetes
Walk through the evolution of Kubernetes since its origins, the main

reasons for its dominance, and its rise to a highly automated and

extensible platform configured with declarative files.

http://www.OpsRamp.com
http://www.opsramp.com

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

3

Container Vs. Virtual Machine

Containerization is hot right now. In 2020, 86% of technology

leaders reported prioritizing containerization projects for

their applications; by 2023, 70% of global businesses are

expected to be running at least two containerized applications

in a production environment. With such explosive adoption

rates, more and more organizations debate whether to

embrace the containerization trend or stay put on virtual

machines. In this chapter, we’ll review the basics of both

solutions and make a direct comparison.

The simplest way to think of a container in relation to a virtual

machine (VM) is that a VM virtualizes a physical server,

whereas a container virtualizes an operating system (OS).

The OS that containers virtualize may run on either a physical

server or a virtual machine. But before we dig deeper into

explaining each, let’s quickly review the key benefits of both

containers and virtual machines.

CHAPTER 1 | Container Vs. Virtual Machine

Container Benefits Virtual Machine Benefits

Small memory footprint since the OS instance is shared across
containers

You can install different OS types (Linux, Windows) in VMs hosted on
the same server

Launch a new instance in seconds Launch a new instance in minutes

Ideal for maintaining a fixed preset configuration and replacing it
as quickly as needs change

Ideal for changing its configuration over time as you would when
using a physical server

Ideal for a lifespan (from launch to termination) ranging from min-
utes to days

Ideal for a lifespan ranging from days to years

Ideally suited to host microservices Ideally suited to support client-server applications or to host containers

WHAT IS A VIRTUAL MACHINE?
A virtual machine creates a software entity that functions

the same way a computer system would. To run VMs, your

physical machines must have a virtualization software known

as a hypervisor (or Virtual Machine Monitor) to host the VMs

and handle VM management. Even though VMware vSphere

is the most popular commercially-licensed hypervisor, Micro-

soft Hyper-V is a common choice in a Windows environment,

while free versions such as XEN (an early open source hypervisor

project) and KVM (even though architected a bit differently) are

commonly used to virtualize a Linux server. The hypervisor

emulates the server’s physical hardware so that the installed

operating system (Linux, Windows, or macOS) won’t know the

difference between a VM and an underlying physical server. So

each virtual machine has its dedicated OS and

kernel. The memory footprint of a VM is almost as high as

a small server since it requires a dedicated OS instance.

Virtual machines help organizations save on IT infrastructure

costs by running many operating systems and applications

on a small number of physical servers. VMs also allow you

to configure an ideal environment for the changing needs of

your applications over time.

VMs running on top of a hypervisor that emulates the underlying hardware

http://www.OpsRamp.com
http://www.opsramp.com
https://www.capitalone.com/tech/cloud/container-adoption-statistics/
https://www.capitalone.com/tech/cloud/container-adoption-statistics/
https://www.cio.com/article/3434010/more-enterprises-are-using-containers-here-s-why.html#_edn1
https://en.wikipedia.org/wiki/Hypervisor
https://www.vmware.com/products/vsphere-hypervisor.html
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://xenproject.org/
https://www.linux-kvm.org/page/Main_Page

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

4

WHAT IS CONTAINERIZATION?
Containerization aims to provide a consistent and portable

way to deliver software applications through containing the

application software and its dependencies in “boxes” that

can be rapidly copied and multiplied to scale up or down

based on changing workload demands.

Containers work because they package all of your application’s

dependencies and configurations (such as system files, soft-

ware libraries, and device drivers) to ensure a predictable and

consistent runtime--regardless of which environment they are

deployed on, provided a Container Runtime Environment (also

known as OS-level virtualization) such as Docker is installed

on the Operating System. Docker remains by far the most

popular container runtime engine while containerd and

CRI-O are the runner-ups.

Host OS & The Kernel
The Hardware component represents a physical or virtual

machine with an Operating System (OS). The OS has what is

known as a kernel, which is a program that acts as a governing

layer between all of the programs that run on the host machine

and its physical components. The kernel plays a critical role in

containerization, and because of this, you must deploy containers

that are compatible with the underlying OS kernel (meaning

containers are OS-specific).

Namespaces & Control Groups
Linux Operating System kernels have two distinct features

known as namespacing and control groups.

 Namespacing: isolates resources (hard drive, networking,

hostnames, users, etc) on a machine for a particular process

 Control Groups (CGroups): limits the amount of resources

that a process can use

These two features combined allow you to isolate a single

process (representing a container) and limit the amount

of computing resources it can consume. Effectively, this

combination is what we call containerization.

Although these features are unique to Linux, you can still use

a Mac or Windows desktop machine. To do so, simply install

a Container Runtime Environment such as Docker (or use

native tools like Hyper-V and HyperKit) and deploy a Linux

virtual machine to host the containers (while your desktop

continues to function as before). The Linux VM provides the

required kernel used to constrain access to the hardware

resources on your machine.

CHAPTER 1 | Container Vs. Virtual Machine

Conceptual depiction of a container

http://www.OpsRamp.com
http://www.opsramp.com
https://en.wikipedia.org/wiki/OS-level_virtualization
https://containerd.io/
https://cri-o.io/

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

5

Containers vs VMs

Containers can be much lighter than

VMs because they don’t need their

own OS to run. As a result, you can run

multiple containers on a single server

without wasting as much of your host

machine’s resources. This setup also

translates into less computational

overhead and faster startup times.

Here is a side-by-side visual comparison of
their architectural differences:

COMPARING VIRTUAL MACHINE AND CONTAINER ARCHITECTURES

Let’s summarize the information that we covered in this article in the form of a tabular comparison:

Although VMs are heavier, slower, and more costly, they still

have a critical role to play in application delivery. VMs are

critical to optimizing server hardware usage in a data center

environment. In fact, the most popular AWS service is still the

EC2 which is nothing other than a virtual machine running

on a hypervisor hosted on an physical AWS server. The EC2 is

often used by AWS clients to host a container runtime engine.

Together, both technologies are extremely powerful and

complimentary. When it comes to hosting applications

architected to use microservices (see our next article),

however, containers are the answer.

CHAPTER 2 | Container Vs. Virtual Machine

Containers VMs

OS-level virtualisation Hardware-level virtualization

Share a single host OS Dedicated OS and kernel

Lightweight (computing footprint) Relatively heavyweight

Quick startup time (seconds) Slower startup time (minutes)

Process-level isolation Fully isolated system

Much lower costs of running
containers

Enterprise virtualization tech-
nology is relatively costly

http://www.OpsRamp.com
http://www.opsramp.com

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

6

Microservices design has become a go-to architectural

framework for teams developing distributed enterprise soft-

ware. But what is this design, and how does an organization

build or transition applications to properly become part of

the microservices movement?

In this article, we’ll explain the basic concepts of microser-

vices, their advantages over traditional monolithic archi-

tectures, and how to build a culture that thrives using this

design approach.

WHAT ARE MICROSERVICES?
Microservices are small discrete software services commu-

nicating via an Application Programming Interface (API) that

collectively form a business application. Each microservice is

aligned with a business functionality and owned by a small

team responsible for maintaining and testing each microservice.

As such, a microservice-based architecture is a type of

software design that modularizes a system into a collection

of services and sub-modules. The paradigm of separating

software modules into services has existed since the dawn

of computing including when Service Oriented Architecture

(SOA) articulated it at the turn of the millennium. At a high

level, the difference is that microservices are more granular

and lightweight than ever conceived before.

These software modules each serve a unique purpose (such

as login, user profile, search, reviews), but together make up

one application. From a technical perspective, this architecture

aims to create network-accessible services that meet the

following criteria:

 Organized around single-purpose functionality

 Highly maintainable and testable

 Loosely coupled

 Independently deployable

 Owned by a small team

Let’s use the example of an e-commerce platform to depict

the benefits of a microservice-based architecture. At a micro

level, you have business-specific workflows like inventory

management, order management, shipping, and payment

processing. To achieve a workflow, one or many microservices

can be used to build the application feature; each microservice

communicates with the front-end User Interface (UI) and each

other via an Application Programming Interface (API).

CHAPTER 2 | Benefits of Microservice-Based Architecture

Microservices are tied to APIs

With a model based on specific business

domains, each microservice is treated

as a black box accessible only via its

API from the outside. As long as the

API remains stable and consistent, the

functionality of the microservice may

independently change over time.

http://www.OpsRamp.com
http://www.opsramp.com
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/API

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

7

4 WAYS TO EMBRACE MICROSERVICE DESIGN
Contrary to what some may think, microservices as an idea

represents more than just a technical architectural model.

It actually represents a culture-first approach to designing

software that emphasizes development autonomy,

accountability, flexibility, and technical freedom to achieve

application excellence.

The success of microservice-style architecture requires mature

and efficient communication to appease Conway’s law, which

suggests that organizations are destined to build design

systems that mirror their communication structures. After all,

it is easy to imagine that a poorly communicating organization

would struggle to create a seamless application experience

devoid of glaring inconsistencies such as conflicting schemas,

unhelpful errors, etc.

Fortunately, there are four clear ways you can ensure that

your organization is set up for success when building

applications through microservices. Let’s take a look.

1. Structure Teams by Business Service
In most businesses, teams operate in silos which creates a

very conventional and inefficient approach to developing

and delivering software. A traditional organization separates

functions such as:

 Product management

 Product marketing

 User experience design

 Front-end development

 Backend development

 Database administration

 Test engineering

 IT operations

Instead, under the microservices model, a multidisciplinary

and cross-functional team owns a particular business service.

Each team then consists of individuals who make up the

respective service’s lifecycle from end to end. This structure

improves understanding of business requirements, team

cadence, and software delivery.

Spotify has expanded on this theme to create an often-

referenced matrixed organizational model (made up of

squads, tribes, chapters, and guilds). Spotify’s model creates

teams aligned by business functionality while still keeping a

role-based domain affinity for each contributor.

Teams Aligned with Business Functionality Implemented in Microservices

CHAPTER 2 | Benefits of Microservice-Based Architecture

http://www.OpsRamp.com
http://www.opsramp.com

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

8

2. Make Deployment Streams Independent
Since microservice teams work on services independent of

other components of the larger system, they can adopt agile

practices such as Continuous Integration and Continuous

Delivery (CI/CD). A centralized, cross-functional team develops,

tests, problem-solves, deploys, and updates services much

faster than traditional teams who might get bottlenecked by

other supporting teams.

For example, a microservice team working on a payments

service for an application can add support for a new payment

method and independently release it into a live application

environment; a traditional team would likely have to coordinate

with back-end, front-end, product, and potentially other service

teams affected by their development changes. With so many

additional complexities, simply aligning on scope, bandwidth,

and priority often drags the velocity down for everyone involved.

3. Grant Technology Heterogeneity
One of the biggest lures to a microservice architecture is the

technical heterogeneity that it offers. As you can imagine,

technology heterogeneity only works if teams have strong

service ownership (independence) instead of collective service

ownership.

In a strong ownership model, each microservice team is in

control of its own programming paradigms, technological

decisions, deployment practices, and tools. They can inde-

pendently choose technology stacks that are best suited for

their respective microservices without worrying about scaling

niche skillets across a broad team.

The strong ownership model is not without its downsides.

As each team standardizes on a different technology, the

movement of personnel across teams becomes constrained,

as does procurement management and training. Spotify

solves this challenge by introducing “guilds” where subject

matter experts coordinate their selections of technologies,

best practices, and tools.

4. Avoid Tight Coupling
Errors have a wide blast radius in a tightly coupled software system. In some cases, a single bug can render an entire application

unusable. With microservice-based architecture, any given software fault or error can only ever impact that one underlying

service. The remaining system can continue to function normally as long as dependent services don’t require its functionality.

Additionally, resolutions can be turned around faster due to the smaller troubleshooting scope and strong ownership of the

responsible team.

THE MODERNIZATION CHALLENGE
As infrastructure ages and new solutions become available, application owners must choose between modernizing or maintaining

their products.

CHAPTER 2 | Benefits of Microservice-Based Architecture

Modernizing Applications Maintaining Applications

Requires costly long-term investments that may take months to complete. Keeps additional costs at a minimum for higher margins.

Ensures competitiveness against emerging players. Prevents user loss due to significant experience changes and instability.

Requires an organization to make structural changes. Avoids risky organizational turmoil if changes are controversial.

Requires motivating employees to adopt new practices and technology. Avoids the costly search of recruiting new experts.

http://www.OpsRamp.com
http://www.opsramp.com

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

9

As you can see, there is a lot of risks involved in modernizing

your applications -- however, the payoff is arguably the only

thing that matters: continued application relevance in a

fast-evolving landscape. That being said, you can find many

applications that still run on backend technologies from the

1980s that have survived on UI updates alone.

Modernizing your applications and adopting a microservices

approach should happen only when you choose to move

away from the client-server application model for a Software

as a Service (SaaS) model. This transition typically happens

either when an application requires to scale beyond its originally

designed capacity or when end-users no longer wish to install

client software on their desktops. The investment required to

support such a transition would be an ideal trigger to adopt a

modern application architecture.

CHAPTER 2 | Benefits of Microservice-Based Architecture

Conclusion
Adopting the microservices design for building applications requires setting up a culture of service independence, multi-disciplinary

team ownership, and open communication. Transitioning to this model of development can be expensive and it is not without

risks to both application stability and organizational harmony, however, the rewards can be great. Applications built using a

microservices design are less vulnerable to global performance issues, faster to release, and easier to upgrade.

http://www.OpsRamp.com
http://www.opsramp.com

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

10

An Introduction to Infrastructure as Code & Immutable Architecture

The old saying “the only constant in life is change” is especially

true when talking about technology. In software development,

concepts such as agile scrum and continuous delivery attempt

to embrace change and streamline its delivery. A more drastic

approach to making constant operational change more effi-

cient is the use of an immutable architecture.

Knowing that iterative changes and upgrades are essential

to the success of applications, this might seem odd. After

all, change also affects the underlying infrastructure and its

configurations that support your applications. So how would

a business benefit from adopting anything described

as immutable?

In this chapter, we’ll explain the concept of immutable ar-

chitecture, the advantages it offers, and how it supports the

notion of Infrastructure as Code (IaC).

WHAT IS IMMUTABLE ARCHITECTURE?
Immutable architecture, also known as immutable infrastruc-

ture, is a term that can be a bit misleading. Coined by Chad

Fowler, an immutable architecture doesn’t mean that your

environment should never change, but rather, once a specific

instance (such as a container or virtual machine) is started,

its configuration should never change.

Instead of upgrading or re-configuring the underlying infra-

structure of that instance (of a container or virtual machine),

you should simply replace it entirely with a new instance that

has all of your required changes. You may need to replace the

instance within minutes, days, or weeks due to a workload

change, an architecture change, or simply to keep up with

changes going on elsewhere in your environment. Either way,

replacing the instance allows for discrete versioning in your

application environment. You can think of each version as a

configuration snapshot at an exact point in time. Systematic

versioning, in turn, lowers the risk of making mistakes during

upgrades, offers the ability to test before rolling out, and en-

ables rolling back (to the previous version) if your application

encounters a problem. Combining flexibility with precision is

the primary goal of an immutable architecture.

The practice of immutable architecture doesn’t have to be

limited to just the underlying infrastructure of your workloads;

you can use this technique to support middleware compo-

nents (such as a messaging bus, a database, or a data cache)

and application software as well. You would simply release

application source code as new, immutable, and versioned

artifacts. You may version each package in the form of a new

Docker image, a new Virtual Machine Image, or a new .jar file

(Java code).

MUTABLE VS. IMMUTABLE ARCHITECTURE
Let’s use a real-world example to illustrate the differences between a mutable and an immutable architecture. Say your company

has an application web server running on a VM in the cloud. This web server has Nginx (webserver) installed on it and a specific

web application version. After some time passes, you decide it’s time to upgrade the version of Nginx or switch to Apache.

CHAPTER 3 | An Introduction to Infrastructure as Code & Immutable Architecture

http://www.OpsRamp.com
http://www.opsramp.com
https://www.linkedin.com/in/fowlerchad/
https://www.linkedin.com/in/fowlerchad/
https://www.nginx.com/

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

11

Upgrading Mutable Architecture
In a mutable architecture, you would simply upgrade your

existing web server to the new version. You would affect such

an upgrade using a configuration tool such as Chef, Puppet,

Ansible, or SaltStack, or complete a manual upgrade.

However, what happens if the upgrade doesn’t go as planned?

There’s a host of factors that could disrupt this process

(network issues, DNS failure, dependency repository unavail-

ability). These disruptions can result in your system being only

partially upgraded, in-between your current and desired state.

The implications of this can be unexpected behavior from

the application because this in-between state would not have

been validated and tested. This scenario might seem simple

enough when considering a single VM, but this becomes expo-

nentially complex with a large fleet of VMs.

Upgrading Immutable Architecture
In an immutable architecture, you would not upgrade your

web server currently in place. To use the new version of Nginx,

you would deploy the web server on a new VM. By using a

different machine, you circumvent the need to upgrade any

existing infrastructure. If the new machine encounters any

errors, you can abort; if it’s working as expected, you can

redirect traffic to the new web server and decommission the

old instance, as illustrated in the diagram right.

Here’s a summary of the benefits of adopting an

immutable architecture.

CHAPTER 3 | An Introduction to Infrastructure as Code & Immutable Architecture

Immutable Architecture Mutable Architecture

Streamlines operations Requires reviews to ensure configuration consistency across nodes

Supports continuous deployment of a software application by
matching infrastructure version to an application version

Requires ongoing configuration changes of the underlying
infrastructure to support application updates

Mitigates manual errors that may result in security threats Exposes risk of configuration inconsistency across instances

Supports scaling of infrastructure by adding and removing nodes
as needed

Offers less control in rapidly replicating an exact configuration

Reduces operational costs Increases operational overhead

http://www.OpsRamp.com
http://www.opsramp.com

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

12

WHAT IS INFRASTRUCTURE AS CODE?
The adoption of the public cloud accelerated the appeal of an

immutable architecture. Not long ago, companies would have

had to deal with a lot of physical infrastructure management

overhead to replace computing nodes. Nowadays, implementing

an immutable architecture has been simplified by cloud

providers who automate resource provisioning on their

self-service platforms. Today, your application’s underlying

infrastructure can be more easily versioned using code.

The main idea behind Infrastructure as Code (IaC) is to enable

writing and executing code to define, deploy, update and destroy

infrastructure by declaring the desired state. This trend

has propelled Terraform to become the most popular

open-source provisioning tool used by companies like Uber,

Slack, Udemy, and Twitch.

TYPES OF IAC TOOLS
There are five broad categories of tools

used to configure and orchestrate

infrastructure and application stacks,

even though the last category on our

list is the only one recognized as a

proper Infrastructure as Code (IaC)

tool. It is helpful to see them defined

and represented by examples, as

summarized in the table below.

CHAPTER 3 | An Introduction to Infrastructure as Code & Immutable Architecture

Ad hoc scripts The most straightforward approach to automating anything is to
write an ad hoc script. You take whatever task you were doing
manually, break it down into discrete steps, using scripting
languages like Bash, Ruby, and Python to define each of those
steps in code, and execute that script on your server.

Configuration
management tools

Chef, Puppet, Ansible, and SaltStack are all configuration manage-
ment tools designed to install and configure software on existing
servers that perpetually exist.

Server templating
tools

An alternative to configuration management that has been recently
growing in popularity is server templating tools such as Docker,
Packer, and Vagrant. Instead of launching and then configuring
servers, the idea behind server templating is to create an image
of a server that captures a fully self-contained “snapshot” of the
operating system (OS), the software, the files, and all other
relevant dependencies.

Orchestration tools Kubernetes would be an example of an orchestration tool. Kuber-
netes allows you to define how to manage your Docker containers
as code. You first deploy the Kubernetes cluster, which is a group
of servers that Kubernetes will manage and use to run your Docker
containers. Most major cloud providers have native support for
deploying managed Kubernetes clusters, such as Amazon Elastic
Container Service for Kubernetes (Amazon EKS), Google Kubernetes
Engine (GKE), and Azure Kubernetes Service (AKS).

Infrastructure as Code
Provisioning tools

Whereas configuration management, server templating, and
orchestration tools define the code that runs on each server or
container, infrastructure as code provisioning tools such as Terraform,
AWS CloudFormation, and OpenStack Heat define infrastructure
configuration across public clouds and data centers. You use such
tools to create servers, databases, caches, load balancers, queues,
monitoring, subnet configurations, firewall settings, routing rules,
and Secure Sockets Layer (SSL) certificates.

http://www.OpsRamp.com
http://www.opsramp.com
https://www.terraform.io/

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

13

The image on the right depicts an example flow of using

Terraform to create a Virtual Machine instance and a database

in the AWS cloud environment.

Using Infrastructure as Code to define application environments,

companies can eliminate the risks of configuration drifts and

accomplish more reliable outcomes in their architectures.

CHAPTER 3 | An Introduction to Infrastructure as Code & Immutable Architecture

Conclusion
Companies looking to extend the benefits of discrete and immutable versioning from their software applications to the entire

architecture would benefit a great deal from adopting the Infrastructure as Code model presented in this article. Cloud-native services,

automation, immutable architecture, and Infrastructure as Code (IaC) are integral components for scaling modern applications.

http://www.OpsRamp.com
http://www.opsramp.com

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

14

The Challenges of Container Management Without Kubernetes

For the last decade, Virtual Machines (VMs) have been the

backbone for software applications deployed to a cloud

environment and still offer a great deal of trusted maturity.

However, when it comes to application portability and deliv-

ery, containerization has overtaken virtualization.

Today, it’s common for organizations to operate thousands

of short-lived containers, each configured according to

different workload requirements. These containers must be

provisioned, connected to a network, secured, replicated, and

eventually terminated. Although one person can manually

configure dozens of containers, a large team must operate

thousands of containers across a large enterprise environment.

As this management-scaling problem became more apparent

for enterprise-level container use cases, an opportunity arose

for orchestration tools like Kubernetes. In this article, we’ll

take a look at the challenges of managing containerized appli-

cations without Kubernetes, especially in a public cloud -- but

first, let’s talk a bit more about Kubernetes.

WHAT IS KUBERNETES?
Kubernetes is a container orchestrator platform that we introduce in this article and cover in-depth in our future articles. Commonly

referred to as K8s (the number 8 represents the eight letters between “K” and “s”), Kubernetes is an open-source project and the

industry’s de-facto standard for automating deployment, scaling, and administration of containerized applications.

SCALING REQUIRES TASK AUTOMATION
Managing containers is challenging without automating resource

allocation, load-balancing, and security enforcement. The list

below highlights some of the tasks that require automation:

 Provisioning containers based on predefined images (OS,

dependencies, libraries)

 Balancing incoming traffic across groups of similar containers

 Adjusting the number of containers based on workload

demand (horizontal scaling)

 Allocating the right amount of CPU and memory for each

container (vertical scaling)

 Configuring network ports to enable secure communication

between containers

 Connecting and removing storage systems attached to

containers

 Restarting containers if they fail

CHAPTER 4 | The Challenges of Container Management Without Kubernetes

http://www.OpsRamp.com
http://www.opsramp.com

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

15

4 CONTAINER MANAGEMENT CHALLENGES MADE EASIER WITH AN ORCHESTRATION TOOL
Below, we dig deeper into four of the many tasks requiring automation in container administration.

1. Deploying
Deploying an application requires many steps.

Here are a few examples:

 Installing device drivers that manage the server

hardware modules

 Installing the latest operating system patches

 Installing software libraries required by the application

to run

 Ensuring communication with needed services such

as a database

 Making sure the IP address is registered with the domain

name service

 Installing virus and vulnerability scanners

 Scheduling backups

Most infrastructure deployment automation technology that

existed before Kubernetes uses a procedural approach towards

deployment configuration steps. This approach is known as

imperative. Examples of such configuration automation tools

are Ansible, Chef, and Puppet.

An early and important decision during Kubernetes’ incep-

tion was the adoption of a declarative model. A declarative

approach eliminates the need to define steps for the desired

outcome. Instead, the final desired state is what is declared or

defined. The Kubernetes platform automatically adjusts the

configuration to reach and maintain the desired state. The

declarative approach saves a lot of time as it abstracts the

complex steps. The focus shifts from the ‘how’ to the ‘what.’

2. Managing the Lifecycle
Docker is just one example of a container runtime engine that

packages your application and all its dependencies together

for delivery to any runtime environment. Another example is

containerd. Below are some of the more common events in

the lifecycle of a container handled by a runtime engine.

 Pull an image from a registry, or Docker Hub

 Create a container based on an image

 Start one or more stopped containers

 Stop one or more running containers

One person can complete these tasks when managing a small

number of containers on a few hosts. However, attempting

to carry this out manually falls far short in an enterprise

environment with hundreds of nodes and thousands of con-

tainers. Kubernetes allows you to simply “declare” what you

want to accomplish rather than code the intermediate steps.

By using a container orchestration platform, you achieve the

following benefits:

 Scaling your applications and infrastructure easily

 Service discovery and container networking

 Improved governance and security controls

 Container health monitoring

 Load balancing of containers evenly among hosts

 Optimal resource allocation

 Container lifecycle management

3. Configuring the Network
One of the most complex and least appreciated aspects of

managing multiple containers is the network configuration. This

step is required so the containers can communicate with each

other and with other networks beyond the cluster. What compli-

cates this process is that the containers rapidly start and termi-

nate, and one mistake could lead to a security exposure. In the

absence of automation tools, teams must configure networking

identity for all applications and load balancing components and

set up security features for ingress and egress of traffic.

With Kubernetes, software teams declare the desired state

of networking for the application before being deployed.

Kubernetes then maps a single IP address to a Pod (the smallest

unit of container aggregation and management) that hosts

multiple containers. This approach aligns the network identity

with the application identity, simplifying the complexity

required of the container networking layer and enabling

easier maintenance at scale.

CHAPTER 4 | The Challenges of Container Management Without Kubernetes

http://www.OpsRamp.com
http://www.opsramp.com
https://www.ansible.com/
https://puppet.com/
https://www.docker.com/products/container-runtime
https://containerd.io/

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

16

4. Scaling
Scaling the infrastructure to match the application workload
requirement has always been a challenge.

Suppose you are managing a few microservices running on a
single server, and you are responsible for deploying, scaling,
and securing these applications. Management may not be too
difficult, assuming they’re all similarly developed (same language,
same OS). But what if you need to scale to a thousand deploy-
ments of different types, moving between local servers and
the cloud? The challenges in such a scenario are:

 Identifying containers that are under or over-allocated
 Knowing whether your applications are appropriately

load-balanced across multiple servers
 Knowing whether your resource cluster contains enough

nodes for peak usage times
 Rolling back or updating all applications
 Modifying all deployments through a centralized portal or CLI
 Enforcing your security standards across all infrastructure

Kubernetes automates the workflows required to provide
these types of functionality. Kubernetes organizes the
hardware nodes as clusters and the containers as pods. You
configure your desired state in a declarative fashion, and it
takes over its administration to achieve your desired state of

availability, performance, and security.

CONTAINER ORCHESTRATION
Container runtime engines such as Docker provide an OS
virtualization platform to operate containers on a physical
server or a virtual machine; however, they don’t handle
administrative or orchestration tasks. Instead, the runtime
engines rely on Kubernetes to take on the orchestration
responsibilities. Container orchestration automates the
scheduling, deployment, networking, scaling, health
monitoring, and container management.

CHAPTER 4 | The Challenges of Container Management Without Kubernetes

Service discovery and load balancing Identifies containers and balances traffic across them

Storage orchestration Automatically mounts storage of your choice

Automated rollouts and rollbacks Launches, stops, or re-assigns containers as needed

Automatic bin packing Provisions desired container CPU and memory

Self-healing Restarts failed or unhealthy containers

Secret and configuration management Stores sensitive passwords and security keys

Conclusion
Managing containerized applications in a large-scale production environment presents DevOps teams with multiple tasks
related to optimal deployment methods, networking configurations, security management, and scalability, to name a few.
Automation and orchestration are required to manage hundreds or thousands of containers. Kubernetes offers functionality
such as self-healing, automated rollouts/rollbacks, container lifecycle management, a declarative deployment model, and rich
scaling capabilities for both nodes and containers.

This quote from Spotify summarizes well the benefits of Kubernetes: “Our internal teams have less of a need to focus on manual capacity

provisioning and more time to focus on delivering features for Spotify.”

Here is a summarized list of the functionality provided by Kubernetes:

http://www.OpsRamp.com
http://www.opsramp.com

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

17

Who Made Kubernetes And Why Is It Popular?

Today, Kubernetes is the container orchestration solution

to use. What began as an idea between Craig McLuckie,

Joe Beda, and Brendan Burns in 2013 has quickly grown to

become one of the most popular open-source projects in the

world. Even as the leading solution, Kubernetes continues to

experience exponential growth from enterprise adoption. And

for the last two years, developers on StackOverflow

have ranked Kubernetes as one of the most “loved” and

“wanted” technologies.

This surge in popularity is directly tied to the rapid adoption of

containers — like Docker containers — in application delivery.

Containers have been at the heart of modern microservices

architectures, cloud-native software, and DevOps workflows.

However, orchestrating container deployments can be difficult,

time-consuming, and complex to scale without the right tools.

Kubernetes is purpose-built to address these challenges. K8s

(a shorthand where the number 8 represents the eight letters

between “K” and “s”) greatly reduces the complexity and

manual work of container orchestration. As a result, major

enterprises including Google, Spotify, Niantic, The New York

Times, Asana, and China Unicom have used Kubernetes to

streamline and scale up their container deployments.

In this article, we’ll explore the history of Kubernetes and

the main reasons it has grown to become the most popular

Container Orchestration Engine available today. availability,

performance, and security.

THE HISTORY OF KUBERNETES
Kubernetes has its roots in Google’s internal Borg System,

introduced between 2003 and 2004. Later, in 2013, Google

released another project known as Omega, a flexible, scalable

scheduler for large compute clusters. In that same year,

McLuckie, Beda, and Burns set out to develop a “minimally

viable orchestrator.” The desired set of essential features for

the orchestrator included:

 Replication: to deploy multiple instances of an application

 Load balancing and service discovery: to route traffic to

these replicated containers

 Basic health checking and repair: to ensure a self-healing

system

 Scheduling: to group many machines into a single pool and

distribute work to them

The following year, Kubernetes was released.

Today, Kubernetes has 1800+ contributors, 500+ meetups

worldwide, and 42,000+ users (many of them joining the

public #kubernetes-dev channel on Slack). 83% of enterprises

surveyed by the Cloud Native Computing Foundation (CNCF)

in 2020 are using Kubernetes.

A brief history of Kubernetes

CHAPTER 5 | Who Made Kubernetes And Why Is It Popular?

http://www.OpsRamp.com
http://www.opsramp.com
https://enterprisersproject.com/article/2019/7/kubernetes-statistics-13-compelling
https://insights.stackoverflow.com/survey/2020?_ga=2.215953559.1474959454.1621249660-379518541.1621249660#technology-most-loved-dreaded-and-wanted-platforms-wanted5
https://www.docker.com/resources/what-container
https://research.google/pubs/pub43438/
https://blog.risingstack.com/the-history-of-kubernetes/
https://www.cncf.io/blog/2020/11/17/cloud-native-survey-2020-containers-in-production-jump-300-from-our-first-survey/
https://www.cncf.io/blog/2020/11/17/cloud-native-survey-2020-containers-in-production-jump-300-from-our-first-survey/

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

18

4 REASONS FOR KUBERNETES’ POPULARITY

#1 The Rise of Containers
Containers paved the way for Kubernetes. But what’s a container?

Containers are lightweight software components that bundle

or package an entire application and its dependencies (such

as software libraries) and configuration (such as network

settings) to run as expected. This approach is becoming

increasingly popular as an alternative to Virtual Machines

when it comes to application portability.

Containerization of applications brings a number of benefits,

including the following:

 Portability: Containers are truly “write once, run anywhere”

(cloud, physical server, virtual server, etc.)

 Efficiency: Containers use fewer resources than virtual

machines (VMs) and better utilize computing resources.

 Agility: With containers, developers can easily integrate

into — or develop new — automated DevOps code delivery

pipelines.

 Higher development throughput: Containers are ideal

for hosting microservices owned by smaller independent

development teams. As a result, they can deliver application

upgrades faster.

 Faster start-up: Containers virtualize the operating system

the same way virtual machines virtualize the physical server

hardware. As such, they are lightweight, which helps them

launch in seconds instead of minutes.

 Flexibility: Containers can run on virtual machines or bare

metal hardware.

To take advantage of all these benefits at scale, software

teams required orchestration tools to deploy and manage

hundreds or thousands of containers which drives the

adoption of Kubernetes.

#2 The Rise of Cloud
The growth of cloud computing has also been a major con-

tributing factor to Kubernetes’ widespread adoption. Cloud

computing offers businesses the opportunity to use as many

resources as they need when they need them. The pay-per-use

model combined with the ability to rapidly provision and

decommission resources make it an ideal platform for hosting

a Kubernetes cluster requiring varying node count to accom-

modate changing workloads.

Kubernetes, by nature, is a cloud-agnostic system that allows

companies to provision the same containers across public clouds

and private clouds (also referred to as the hybrid cloud). The

hybrid cloud model is a popular choice for enterprises, making

Kubernetes an ideal solution for their use case.

Benefits of Kubernetes for hybrid cloud models include:

 Consistency across on-premise and public cloud.

 Portability of workload across platforms.

 Automation of provisioning processes spanning data center

and cloud.

 Automated scaling of computing resources to maintain

performance.

CHAPTER 5 | Who Made Kubernetes And Why Is It Popular?

http://www.OpsRamp.com
http://www.opsramp.com
https://www.ey.com/en_ie/technology/the-rise-and-rise-of-cloud-computing
https://www.citrix.com/solutions/app-delivery-and-security/what-is-hybrid-cloud.html#:~:text=Hybrid%20cloud%20is%20a%20solution,as%20needs%20and%20costs%20fluctuate.
https://www.ibm.com/blogs/cloud-computing/2019/04/01/hybrid-cloud-model-business/

1-833-OPS-RAMP | OpsRamp.com © OpsRamp, Inc. All Rights Reserved

19

#3 The Declarative Model
Before the release of Kubernetes, comparable tools automated

the step-by-step procedures of deployment activities. But Kuber-

netes took a different approach that declares what the desired

state of the system should be. Once the desired state is defined,

Kubernetes continuously updates the underlying configuration

necessary to achieve and maintain the targeted state.

This declarative paradigm removes the complexity of planning

every step involved in the deployment and scaling processes and

is therefore significantly more scalable in large environments.

#4 Extensibility
Kubernetes is a highly extensible platform consisting of native

resource definitions such as Pods, Deployments, ConfigMaps,

Secrets, and Jobs. Each resource serves a specific purpose

and is key to running applications in the cluster. Software

developers can also add Custom Resource Definitions (CRD)

via the Kubernetes API server.

Also, Kubernetes enables software teams to write custom

Operators, a specific process running in a Kubernetes

cluster that follows what is known as the control pattern.

An Operator allows users to automate the management of

Custom Resource Definitions by talking to the Kubernetes

API. Because K8s is so open and extensible, it can meet the

demands of a wide range of use cases, limiting the need for

engineers to turn to other tools for container orchestration.

CHAPTER 5 | Who Made Kubernetes And Why Is It Popular?

Conclusion
As the cloud-native space continues to grow, more businesses will look to cloud-computing solutions to offer elasticity. Going

hand-in-hand with this elastic cloud model is the use of containers for easier portability and rapid delivery of application workloads.

While these paradigms have solved many problems, they’ve also introduced new administrative complexities at a large scale that

require the automated orchestration offered by K8s. Kubernetes has received more attention and adoption than any other

infrastructure technology in recent memory. This level of adoption should last for years to come since K8s is free, sophisticated,

stable, and well ahead of any other competing technology.

http://www.OpsRamp.com
http://www.opsramp.com
https://ubuntu.com/blog/declarative-vs-imperative-devops-done-right
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://www.redhat.com/en/resources/oreilly-kubernetes-operators-automation-ebook
https://kubernetes.io/docs/concepts/architecture/controller/

