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If there’s an error in data or analytics, the manager in charge is on the hook to report what, 
when and why the problem occurred and how to ensure that the same situation will not recur. 
Observability reflects the ease with which the data analytics team can get these answers. An 
observable system is architected with transparency and instrumentation, providing a complete 
picture of the data pipelines. In DataOps, tests provide status at each stage of processing. Testing 
is the foundation of observability. Most discussions of observability focus on data observability. 
DataOps testing covers observability of data, but also adds another dimension – process 
observability. DataOps provides fine-grained observability into what is happening with end-to-end 
analytics lifecycle workflows. DataOps testing provides the process transparency that enables a 
high level of observability.

In data analytics, data changes continuously as it flows through the system. Data can 

drift out of statistical range, defy data prep algorithms, and confuse machine learning 

models. While DevOps testing focuses on verifying code, DataOps testing must cover 

both analytics code and data. 

Manual testing of code and data is performed step-by-step by a person. This process 

tends to be expensive as it requires a precious resource, such as a data scientist, to run 

tests one at a time. Manual testing can also be prone to human error and is often too 

cumbersome to run frequently. 

DataOps automates testing, so test scripts execute under automated orchestration. 

Automated testing is much more cost-effective and reliable than manual testing, 

but the effectiveness of automated testing depends on the quality and breadth of the 

tests. In a DataOps enterprise, members of the analytics team spend 20% of their time 

writing tests. Whenever a problem occurs, a new test is added. New tests accompany 

every analytics update. The breadth and depth of the test suite continuously grow. One 

advantage of automated testing is that it’s easier to run, so it executes repeatedly and 

regularly. 

To ensure high quality, you have to consistently and regularly test your data and code. 

Some people write a few unit tests and proudly call it “DataOps.” Unit tests are a move 

in the right direction, but there are several other types of tests that can improve the 

robustness of your data pipelines. A data organization can reduce the number of errors 

to virtually zero by implementing a breadth of tests at every step in their data analytics 

pipelines.

The DataKitchen Platform executes tests as an intrinsic part of production orchestration 

and analytics continuous integration and deployment. Below are some standard 

production (data) and deployment (analytics) tests that should be part of every DataOps 

implementation. Most tests can be applied to both development and production.

https://info.datakitchen.io/white-paper-dataops-is-not-just-devops-for-data
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MONITORING DATA IN 
PRODUCTION

Think of data analytics as a manufacturing pipeline. There are inputs (data sources), 

processes (transformations), and outputs (analytics). A typical manufacturing process 

includes tests at every step in the pipeline that attempt to identify problems as early as 

possible. As every manufacturer knows, it is much more efficient and less expensive to 

catch a problem in incoming inspection as opposed to finished goods.

Figure 1 depicts the data analytics pipeline. In this diagram, analytics access databases 

and then transform data in preparation for being input into models. Models output 

visualizations and reports that provide critical information to users. 

FIGURE 1: Testing each stage of the data analytics pipeline

Along the way, tests ask important questions. Are data inputs free from issues? Is 

business logic correct? Are outputs consistent? As in lean manufacturing, tests verify 

every step in the pipeline. For example, data input tests are analogous to manufacturing 

incoming quality control. Figure 2 shows examples of data input, output, and business 

logic tests.

Data input tests strive to prevent any erroneous data from being fed into subsequent 

pipeline stages. Allowing bad data to progress through the pipeline wastes processing 

resources and increases the risk of never catching an issue. Input tests also focus 

attention on the quality of data sources, which must be actively managed – industrial 

manufacturers call this supply chain management.

Data output tests verify that a pipeline stage executed correctly. Business logic tests 

validate data against tried and true assumptions about the business. For example, 

perhaps all European customers are assigned to a member of the Europe sales team. 

Test results saved over time provide a way to check and monitor quality versus 

historical levels.

http://bit.ly/2mgd8lh
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TYPES OF DATA 
PIPELINE TESTS

The data team may sometimes feel that its work product is under a microscope. If the 

analytics look “off,” users can often tell immediately.  Business users are experts in 

their own domain and will often see problems in analytics with only a quick glance. 

It’s generally an unpleasant experience for the data team to learn about analytics errors 

from its internal and external customers.

Finding issues before your internal customers do is critically important for the data 

team. Three basic tests will help you find problems before anyone else: location balance, 

historical balance, and statistical process control.

Location Balance Tests

Location Balance tests ensure that data properties match business logic at each stage 

of processing. For example, an application may expect 1 million rows of data to arrive 

via FTP. The Location Balance test could verify that the correct quantity of data arrived 

initially and that the same quantity is present in the database, in other stages of the 

pipeline, and finally, in reports (Figure 3). 

FIGURE 2: Tests validate data inputs and outputs, and verify that data is consistent with business logic.

FIGURE 3: Location Balance Tests verify 1M rows in raw source data, and the corresponding 1M rows 
/ 300K facts / 700K dimension members in the database schema, and 300K facts / 700K dimension 
members in a Tableau report
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Historical Balance

Historical Balance tests compare current data to previous or expected values. These 

tests rely upon historical values as a reference to determine whether data values are 

reasonable (or within the range of reasonable). For example, a test can check the top 

fifty customers or suppliers. Did their values unexpectedly or unreasonably go up or 

down relative to historical values?

It’s not enough for analytics to be correct. Accurate analytics that “look wrong” to users 

raise credibility questions. Figure 4 shows how a change in SKU allocations, moving 

from pre-production to production, affects the sales volumes for product groups G1 and 

G2. You can bet that the VP of sales will notice this change immediately and report back 

that the analytics look wrong. Missing expectations is a common issue for analytics 

– the report is correct, but it reflects poorly on the data team because it seems wrong 

to users. What has changed? When confronted, the data analytics team has no ready 

explanation. Guess who is in the hot seat.

Historical Balance tests could have alerted the data team ahead of time that product 

group sales volumes had shifted unexpectedly. This warning would have given the data 

analytics team a chance to investigate and communicate the change to users in advance. 

Instead of hurting credibility, this episode could help build it by showing users that 

the reporting is under control and that the data team is on top of changes that affect 

analytics. “Dear sales department, you may notice a change in the sales volumes for G1 and G2. 

This difference reflects a reassignment of SKUs within the product groups.” 

FIGURE 4: It’s not enough for analytics to be correct. Accurate analytics that “look wrong” to users 
raise credibility questions.
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STATISTICAL 
PROCESS CONTROL

Lean manufacturing operations measure and monitor every aspect of their process in 

order to detect issues as early as possible. These are called Time Balance tests or, more 

commonly, statistical process control (SPC). SPC tests repeatedly measure an aspect of 

the data pipeline screening for error or warning patterns (Figure 5). SPC offers a critical 

tool for the data team to catch failures before users see them in reports. 

FAILURE MODES A disciplined data production process classifies failures according to severity level. Some 

errors are fatal and require the data analytics pipeline to be stopped. In a manufacturing 

setting, the most severe errors “stop the line.”

Some test failures are warnings. They require further investigation by a member of 

the data analytics team. Was there a change in a data source? Or a redefinition that 

affects how data is reported? A warning gives the data analytics team time to review the 

changes, talk to domain experts, and find the root cause of the anomaly.

Many test outputs will be 

informational. They help 

the data engineer, who 

oversees the pipeline, 

monitor routine pipeline 

activity or investigate 

failures.

FIGURE 5: Statistical Process Control tests apply numerical criteria to data 
analytics pipeline measurements

TABLE 1: Actions required for different failure modes

Stop the pipeline

Investigate the failure

Context-dependent

Error

Warning

Informational

REQUIRED ACTIONSEVERITY
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A complex process could have thousands of tests running continuously. When an error 

or warning occurs, a person on the data team should be alerted in real-time through 

email (Figure 6), text, or a notification service like Slack. Automated alerts free the data 

team from the distraction of having to poll test results periodically. If and when an 

event takes place, they’ll be notified and can take action.

TESTING CODE IN 
DEVELOPMENT

At this point, some of you are thinking software development methods have nothing to 

do with me. I am a data analyst/scientist, not a coder. I am a tool expert. What I do is just a 

sophisticated form of configuration. This is a common point of view in data analytics. 

However, it leads to a mindset that slows down analytics cycle time.

Tools vendors have a business interest in perpetuating the myth that if you stay within 

the well-defined boundaries of their tool, you are protected from the complexity of 

software development. This view is ill-considered.

Don’t get us wrong. We love tools, but don’t buy into this falsehood.

The $100B analytics market divides into two segments: tools that create code and tools 

that run code. The point is – data analytics is code. The data professional creates code 

and must own, embrace and manage the complexity that comes along with it.

Returning to Figure 1 above, we see a data operations pipeline with code at every stage 

of the pipeline. Python, SQL, R – these are all code. The tools of the trade (Informatica, 

Tableau, Excel, …) are also code. If you open an Informatica or Tableau file, it’s XML. It 

contains conditional branches (if-then-else constructs), loops and you can even embed 

Python or R.

FIGURE 6: Example data test result notification email
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TYPES OF TESTS The software industry has decades of experience ensuring that code behaves 

as expected. Each type of test has a specific goal. With cloud capabilities and 

infrastructure-as-code methodologies, data organizations encounter less resistance to 

accumulating large test suites. In general, when we speak of testing in data analytics, 

more is better. If you spend any time discussing testing with your peers, the following 

terms are sure to come up:

Unit Tests

Software developers run unit tests to ensure that a section of code (a “unit” that 

implements a specific feature or function) fulfills its function and operates correctly. 

A unit test could consume a range of inputs, including some corner cases, and verify 

that application behavior or results match expectations. Parameterizing unit tests can 

improve test efficiency and productivity by enabling one test to cover many cases. If 

a data analytics project is divided among several data scientists or analysts, then each 

contributor could write unit tests to verify their piece of code. Unit tests apply to each 

component of an application separately and pave the way for integration testing.

Integration Tests

Integration Tests focus on the interaction between components to ensure that they are 

interoperating correctly. Whereas unit tests focus on one specific unit of the application, 

integration testing utilizes multiple units to verify that they are working together 

correctly. The most straightforward integration test strategy verifies the application 

as a whole. Software developers have devised several other approaches to integration 

testing which determine which units to test together.

Functional Tests

Functional Tests derive from the functional specification (or user stories) of the 

software under test. Each feature requirement is verified independently by providing 

inputs (or conditional scenarios) and verifying the correctness of outputs or application 

response. Functional testing is usually performed as black-box testing, meaning the 

tests focus on application outputs and behaviors without any knowledge of internal 

architecture or underlying implementation.

Regression Tests

A software regression is a bug or error introduced by a change, such as a code 

enhancement or an environment upgrade. Regression Tests are essentially a battery 

of tests that can be rerun after a change is made to prove that an application is still 

functioning. A regression test demonstrates that previously validated features continue 

to operate correctly once new features or enhancements have been deployed.

Performance Tests

Performance Tests verify a system’s speed, responsiveness, stability, reliability, 

scalability and availability under a given workload. Performance tests can reveal 

http://bit.ly/2HnbDxp
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Functional_testing
https://en.wikipedia.org/wiki/Regression_testing
https://en.wikipedia.org/wiki/Software_performance_testing
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shortcomings in a system architecture. In DataOps, performance tests can measure the 

speed of common workflows: analytics development environment creation, analytics 

deployment, and time-to-resolution of production errors. Improving the performance 

of routine tasks significantly impacts a data organization’s agility. If these workflows 

are not automated, you may find them to be a drag on data organization productivity.

Smoke Tests

Smoke Tests quickly validate that major system functions are operational. A smoke 

test has several important uses. If a system stops executing, a smoke test on major 

subsystems can quickly determine whether analytics components are “up and 

running.” Sometimes smoke testing is used as an initial qualification before running  

an extensive test suite. 

TEST METRICS Test metrics can help determine whether test coverage is adequate. Figure 7 below 

shows the number of tests in each node of execution in an analytics pipeline, depicted 

as a directed acyclic graph. As a starting point, each node should have multiple tests. 

The number of tests should reflect the complexity of the system. Tests should cover all 

nodes and data sets, but should not overwhelm your processing resources.

FIGURE 7: The DataKitchen Platform UI shows how many tests are being run at each node in the 
analytics pipeline.

Metrics can also track the overall number of tests and the tests per execution node in 

the end-to-end system. In Figure 8, we see that even though the overall number of 

tests is increasing, the average number of tests per node has drifted downward. This 

feedback may encourage the team to slightly increase its test production.

https://en.wikipedia.org/wiki/Smoke_testing_(software)
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A DataOps Platform integrates the processing nodes in each data pipeline with their 

associated tests. It also creates a common framework that can accept heterogeneous 

tools used in each node. So each data engineer or data scientist can use the tool that 

they prefer and the DataOps Platform standardizes the interfaces.

The typical data pipeline uses numerous tools, each performing a specific job. The 

DataOps Platform spans the entire pipeline, from data sources to published analytics, 

allowing you to write tests for each and every step along the way. Imagine having to 

learn all of the tools in the data pipeline and writing tests within each tool’s domain for 

its subset of operations.

FIGURE 8: Graphs and metrics help determine whether the analytics are being adequately tested.

THE ROLE OF A 
DATAOPS PLATFORM

CONCLUSION A unified, automated test suite that tests/monitors both production data and analytic 

code is the linchpin that makes DataOps work. Robust and thorough testing removes 

or minimizes the need to perform manual steps, which avoids a bottleneck that slows 

innovation. Removing constraints helps speed innovation and improve quality by 

minimizing analytics cycle time. With a highly optimized test process, you’ll be able  

to expedite new analytics into production with a high level of confidence.

http://bit.ly/2nxfRJd

