
A Guide to DataOps Tests

W H I T E P A P E R

datakitchen.io info@datakitchen.io ©2021 DataKitchen, Inc.

1datakitchen.io info@datakitchen.io ©2021 DataKitchen, Inc.

W H I T E P A P E R

If there’s an error in data or analytics, the manager in charge is on the hook to report what,
when and why the problem occurred and how to ensure that the same situation will not recur.
Observability reflects the ease with which the data analytics team can get these answers. An
observable system is architected with transparency and instrumentation, providing a complete
picture of the data pipelines. In DataOps, tests provide status at each stage of processing. Testing
is the foundation of observability. Most discussions of observability focus on data observability.
DataOps testing covers observability of data, but also adds another dimension – process
observability. DataOps provides fine-grained observability into what is happening with end-to-end
analytics lifecycle workflows. DataOps testing provides the process transparency that enables a
high level of observability.

In data analytics, data changes continuously as it flows through the system. Data can

drift out of statistical range, defy data prep algorithms, and confuse machine learning

models. While DevOps testing focuses on verifying code, DataOps testing must cover

both analytics code and data.

Manual testing of code and data is performed step-by-step by a person. This process

tends to be expensive as it requires a precious resource, such as a data scientist, to run

tests one at a time. Manual testing can also be prone to human error and is often too

cumbersome to run frequently.

DataOps automates testing, so test scripts execute under automated orchestration.

Automated testing is much more cost-effective and reliable than manual testing,

but the effectiveness of automated testing depends on the quality and breadth of the

tests. In a DataOps enterprise, members of the analytics team spend 20% of their time

writing tests. Whenever a problem occurs, a new test is added. New tests accompany

every analytics update. The breadth and depth of the test suite continuously grow. One

advantage of automated testing is that it’s easier to run, so it executes repeatedly and

regularly.

To ensure high quality, you have to consistently and regularly test your data and code.

Some people write a few unit tests and proudly call it “DataOps.” Unit tests are a move

in the right direction, but there are several other types of tests that can improve the

robustness of your data pipelines. A data organization can reduce the number of errors

to virtually zero by implementing a breadth of tests at every step in their data analytics

pipelines.

The DataKitchen Platform executes tests as an intrinsic part of production orchestration

and analytics continuous integration and deployment. Below are some standard

production (data) and deployment (analytics) tests that should be part of every DataOps

implementation. Most tests can be applied to both development and production.

https://info.datakitchen.io/white-paper-dataops-is-not-just-devops-for-data

2datakitchen.io info@datakitchen.io ©2021 DataKitchen, Inc.

W H I T E P A P E R

MONITORING DATA IN
PRODUCTION

Think of data analytics as a manufacturing pipeline. There are inputs (data sources),

processes (transformations), and outputs (analytics). A typical manufacturing process

includes tests at every step in the pipeline that attempt to identify problems as early as

possible. As every manufacturer knows, it is much more efficient and less expensive to

catch a problem in incoming inspection as opposed to finished goods.

Figure 1 depicts the data analytics pipeline. In this diagram, analytics access databases

and then transform data in preparation for being input into models. Models output

visualizations and reports that provide critical information to users.

FIGURE 1: Testing each stage of the data analytics pipeline

Along the way, tests ask important questions. Are data inputs free from issues? Is

business logic correct? Are outputs consistent? As in lean manufacturing, tests verify

every step in the pipeline. For example, data input tests are analogous to manufacturing

incoming quality control. Figure 2 shows examples of data input, output, and business

logic tests.

Data input tests strive to prevent any erroneous data from being fed into subsequent

pipeline stages. Allowing bad data to progress through the pipeline wastes processing

resources and increases the risk of never catching an issue. Input tests also focus

attention on the quality of data sources, which must be actively managed – industrial

manufacturers call this supply chain management.

Data output tests verify that a pipeline stage executed correctly. Business logic tests

validate data against tried and true assumptions about the business. For example,

perhaps all European customers are assigned to a member of the Europe sales team.

Test results saved over time provide a way to check and monitor quality versus

historical levels.

http://bit.ly/2mgd8lh

3datakitchen.io info@datakitchen.io ©2021 DataKitchen, Inc.

W H I T E P A P E R

TYPES OF DATA
PIPELINE TESTS

The data team may sometimes feel that its work product is under a microscope. If the

analytics look “off,” users can often tell immediately. Business users are experts in

their own domain and will often see problems in analytics with only a quick glance.

It’s generally an unpleasant experience for the data team to learn about analytics errors

from its internal and external customers.

Finding issues before your internal customers do is critically important for the data

team. Three basic tests will help you find problems before anyone else: location balance,

historical balance, and statistical process control.

Location Balance Tests

Location Balance tests ensure that data properties match business logic at each stage

of processing. For example, an application may expect 1 million rows of data to arrive

via FTP. The Location Balance test could verify that the correct quantity of data arrived

initially and that the same quantity is present in the database, in other stages of the

pipeline, and finally, in reports (Figure 3).

FIGURE 2: Tests validate data inputs and outputs, and verify that data is consistent with business logic.

FIGURE 3: Location Balance Tests verify 1M rows in raw source data, and the corresponding 1M rows
/ 300K facts / 700K dimension members in the database schema, and 300K facts / 700K dimension
members in a Tableau report

4datakitchen.io info@datakitchen.io ©2021 DataKitchen, Inc.

W H I T E P A P E R

Historical Balance

Historical Balance tests compare current data to previous or expected values. These

tests rely upon historical values as a reference to determine whether data values are

reasonable (or within the range of reasonable). For example, a test can check the top

fifty customers or suppliers. Did their values unexpectedly or unreasonably go up or

down relative to historical values?

It’s not enough for analytics to be correct. Accurate analytics that “look wrong” to users

raise credibility questions. Figure 4 shows how a change in SKU allocations, moving

from pre-production to production, affects the sales volumes for product groups G1 and

G2. You can bet that the VP of sales will notice this change immediately and report back

that the analytics look wrong. Missing expectations is a common issue for analytics

– the report is correct, but it reflects poorly on the data team because it seems wrong

to users. What has changed? When confronted, the data analytics team has no ready

explanation. Guess who is in the hot seat.

Historical Balance tests could have alerted the data team ahead of time that product

group sales volumes had shifted unexpectedly. This warning would have given the data

analytics team a chance to investigate and communicate the change to users in advance.

Instead of hurting credibility, this episode could help build it by showing users that

the reporting is under control and that the data team is on top of changes that affect

analytics. “Dear sales department, you may notice a change in the sales volumes for G1 and G2.

This difference reflects a reassignment of SKUs within the product groups.”

FIGURE 4: It’s not enough for analytics to be correct. Accurate analytics that “look wrong” to users
raise credibility questions.

5datakitchen.io info@datakitchen.io ©2021 DataKitchen, Inc.

W H I T E P A P E R

STATISTICAL
PROCESS CONTROL

Lean manufacturing operations measure and monitor every aspect of their process in

order to detect issues as early as possible. These are called Time Balance tests or, more

commonly, statistical process control (SPC). SPC tests repeatedly measure an aspect of

the data pipeline screening for error or warning patterns (Figure 5). SPC offers a critical

tool for the data team to catch failures before users see them in reports.

FAILURE MODES A disciplined data production process classifies failures according to severity level. Some

errors are fatal and require the data analytics pipeline to be stopped. In a manufacturing

setting, the most severe errors “stop the line.”

Some test failures are warnings. They require further investigation by a member of

the data analytics team. Was there a change in a data source? Or a redefinition that

affects how data is reported? A warning gives the data analytics team time to review the

changes, talk to domain experts, and find the root cause of the anomaly.

Many test outputs will be

informational. They help

the data engineer, who

oversees the pipeline,

monitor routine pipeline

activity or investigate

failures.

FIGURE 5: Statistical Process Control tests apply numerical criteria to data
analytics pipeline measurements

TABLE 1: Actions required for different failure modes

Stop the pipeline

Investigate the failure

Context-dependent

Error

Warning

Informational

REQUIRED ACTIONSEVERITY

6datakitchen.io info@datakitchen.io ©2021 DataKitchen, Inc.

W H I T E P A P E R

A complex process could have thousands of tests running continuously. When an error

or warning occurs, a person on the data team should be alerted in real-time through

email (Figure 6), text, or a notification service like Slack. Automated alerts free the data

team from the distraction of having to poll test results periodically. If and when an

event takes place, they’ll be notified and can take action.

TESTING CODE IN
DEVELOPMENT

At this point, some of you are thinking software development methods have nothing to

do with me. I am a data analyst/scientist, not a coder. I am a tool expert. What I do is just a

sophisticated form of configuration. This is a common point of view in data analytics.

However, it leads to a mindset that slows down analytics cycle time.

Tools vendors have a business interest in perpetuating the myth that if you stay within

the well-defined boundaries of their tool, you are protected from the complexity of

software development. This view is ill-considered.

Don’t get us wrong. We love tools, but don’t buy into this falsehood.

The $100B analytics market divides into two segments: tools that create code and tools

that run code. The point is – data analytics is code. The data professional creates code

and must own, embrace and manage the complexity that comes along with it.

Returning to Figure 1 above, we see a data operations pipeline with code at every stage

of the pipeline. Python, SQL, R – these are all code. The tools of the trade (Informatica,

Tableau, Excel, …) are also code. If you open an Informatica or Tableau file, it’s XML. It

contains conditional branches (if-then-else constructs), loops and you can even embed

Python or R.

FIGURE 6: Example data test result notification email

7datakitchen.io info@datakitchen.io ©2021 DataKitchen, Inc.

W H I T E P A P E R

TYPES OF TESTS The software industry has decades of experience ensuring that code behaves

as expected. Each type of test has a specific goal. With cloud capabilities and

infrastructure-as-code methodologies, data organizations encounter less resistance to

accumulating large test suites. In general, when we speak of testing in data analytics,

more is better. If you spend any time discussing testing with your peers, the following

terms are sure to come up:

Unit Tests

Software developers run unit tests to ensure that a section of code (a “unit” that

implements a specific feature or function) fulfills its function and operates correctly.

A unit test could consume a range of inputs, including some corner cases, and verify

that application behavior or results match expectations. Parameterizing unit tests can

improve test efficiency and productivity by enabling one test to cover many cases. If

a data analytics project is divided among several data scientists or analysts, then each

contributor could write unit tests to verify their piece of code. Unit tests apply to each

component of an application separately and pave the way for integration testing.

Integration Tests

Integration Tests focus on the interaction between components to ensure that they are

interoperating correctly. Whereas unit tests focus on one specific unit of the application,

integration testing utilizes multiple units to verify that they are working together

correctly. The most straightforward integration test strategy verifies the application

as a whole. Software developers have devised several other approaches to integration

testing which determine which units to test together.

Functional Tests

Functional Tests derive from the functional specification (or user stories) of the

software under test. Each feature requirement is verified independently by providing

inputs (or conditional scenarios) and verifying the correctness of outputs or application

response. Functional testing is usually performed as black-box testing, meaning the

tests focus on application outputs and behaviors without any knowledge of internal

architecture or underlying implementation.

Regression Tests

A software regression is a bug or error introduced by a change, such as a code

enhancement or an environment upgrade. Regression Tests are essentially a battery

of tests that can be rerun after a change is made to prove that an application is still

functioning. A regression test demonstrates that previously validated features continue

to operate correctly once new features or enhancements have been deployed.

Performance Tests

Performance Tests verify a system’s speed, responsiveness, stability, reliability,

scalability and availability under a given workload. Performance tests can reveal

http://bit.ly/2HnbDxp
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Functional_testing
https://en.wikipedia.org/wiki/Regression_testing
https://en.wikipedia.org/wiki/Software_performance_testing

8datakitchen.io info@datakitchen.io ©2021 DataKitchen, Inc.

W H I T E P A P E R

shortcomings in a system architecture. In DataOps, performance tests can measure the

speed of common workflows: analytics development environment creation, analytics

deployment, and time-to-resolution of production errors. Improving the performance

of routine tasks significantly impacts a data organization’s agility. If these workflows

are not automated, you may find them to be a drag on data organization productivity.

Smoke Tests

Smoke Tests quickly validate that major system functions are operational. A smoke

test has several important uses. If a system stops executing, a smoke test on major

subsystems can quickly determine whether analytics components are “up and

running.” Sometimes smoke testing is used as an initial qualification before running

an extensive test suite.

TEST METRICS Test metrics can help determine whether test coverage is adequate. Figure 7 below

shows the number of tests in each node of execution in an analytics pipeline, depicted

as a directed acyclic graph. As a starting point, each node should have multiple tests.

The number of tests should reflect the complexity of the system. Tests should cover all

nodes and data sets, but should not overwhelm your processing resources.

FIGURE 7: The DataKitchen Platform UI shows how many tests are being run at each node in the
analytics pipeline.

Metrics can also track the overall number of tests and the tests per execution node in

the end-to-end system. In Figure 8, we see that even though the overall number of

tests is increasing, the average number of tests per node has drifted downward. This

feedback may encourage the team to slightly increase its test production.

https://en.wikipedia.org/wiki/Smoke_testing_(software)

9datakitchen.io info@datakitchen.io ©2021 DataKitchen, Inc.

W H I T E P A P E R

A DataOps Platform integrates the processing nodes in each data pipeline with their

associated tests. It also creates a common framework that can accept heterogeneous

tools used in each node. So each data engineer or data scientist can use the tool that

they prefer and the DataOps Platform standardizes the interfaces.

The typical data pipeline uses numerous tools, each performing a specific job. The

DataOps Platform spans the entire pipeline, from data sources to published analytics,

allowing you to write tests for each and every step along the way. Imagine having to

learn all of the tools in the data pipeline and writing tests within each tool’s domain for

its subset of operations.

FIGURE 8: Graphs and metrics help determine whether the analytics are being adequately tested.

THE ROLE OF A
DATAOPS PLATFORM

CONCLUSION A unified, automated test suite that tests/monitors both production data and analytic

code is the linchpin that makes DataOps work. Robust and thorough testing removes

or minimizes the need to perform manual steps, which avoids a bottleneck that slows

innovation. Removing constraints helps speed innovation and improve quality by

minimizing analytics cycle time. With a highly optimized test process, you’ll be able

to expedite new analytics into production with a high level of confidence.

http://bit.ly/2nxfRJd

