
page 1

Autonomous
Security
Vehicle Self-Protection
against Cyberattacks

December 2018

© 2018 Karamba Security – All Rights Reserved – contact@karambasecurity.com
Version 2.0

page 2

page 3

Executive Summary
Part I: Obstacles that Hinder Vehicle Security and Safety
Part II: Turning Strategies into Best-Practice Protection
Embedding Native Security in ECUs
Hardening ECUs to Factory Settings
In-Memory Validation
Whitelisting Executables
Authentication of Network Messages
Enabling OEM-Sourced Updates
Protection on Hypervisors
Threat Landscape Analysis
Automating Protection for the Life of the Car
Measuring Performance
Incident Response and Forensic Reporting
Anti-Tampering

Ease of Deployment
Advantages of Hardening the ECUs
The Big Picture: Autonomous Security
References

4

6
12
12
13
13
14
15
16
16

17
18
22
23
25
26
26
28
30

page 3

Contents

page 4

In a race to secure connected and autonomous cars,
cybersecurity experts have tried to adapt enterprise
security methodology to the vehicle computing
environment. The results have been suboptimal
because vehicles have a unique set of constraints and
requirements. Most importantly, passenger safety is
at risk, leaving no room for errors.

Even though enterprise data security has been modified
for vehicles, it still leads to unwanted ramifications,
including: 1) false positives; 2) remediation lag;
3) unpatched zero-day vulnerabilities;
4) slowed performance; and 5) delayed pen testing.

These five safety and security constraints are even more
problematic when non-deterministic security products
such as anomaly-based intrusion-detection systems
are used for attack prevention. By classifying potential
threats based on heuristics or probabilities, these
solutions lead to false positives. A “better safe than
sorry” approach is fine for data security, but in a car,
blocking legitimate commands, like braking, could lead
to car crashes and to compromised passenger safety.
False positives are not an option when driver, passenger
and pedestrian safety are at stake.

Executive Summary

page 5

Collectively, these hazards present a mandate to vehicle
cybersecurity protection that ensures passenger safety
with a negligible performance impact. To accomplish
this goal, deterministic solutions hold the most promise.
The “vicious cycle” of detection–analysis–mitigation
introduces a detection gap which is unacceptable in
mission-critical systems and infrastructure. A more
deterministic approach is thus called for.

In this white paper, we first discuss the key differences
between enterprise security and vehicle cybersecurity.
Based on the distinctions, and using a powerful threat-
landscape analysis toolset, we have formulated a set of
requirements and strong preferences for the design of
vehicle cybersecurity.

In the latter part of the white paper, we introduce the
Autonomous Security® paradigm, designed to meet
these requirements. This model embeds deterministic
security into the vehicle’s computer binary code during
the software build process, and authenticates in-vehicle
communication with no network overhead.
By hardening both the electronic control units (ECUs)
and the communication between ECUs based on
factory settings, Autonomous Security creates self-
defending devices, enabling the car to protect itself from
attack attempts.

There is no need for updates, day-to-day management,
or cloud access — encumbrances that impede product
roll-out, retrofitting, and in some cases, security itself.

page 6

Part I: Obstacles that Hinder
Vehicle Security and Safety

To create an effective cybersecurity strategy, software
architects must examine all obstacles that limit vehicle
security options. For starters, there is a distinction
between protecting data and protecting lives. To deliver
proactive defense without putting a strain on limited-
resource ECUs, in-vehicle threat protection must avoid:

1. False positives
2. Remediation lag
3. Zero-day vulnerabilities
4. Slowed performance
5. Delayed pen testing

False positives cannot be tolerated in the context of
vehicle safety, given the possible consequences when
a legitimate command is mistakenly cancelled. Similar
to heuristic-based solutions, signature-based security,
which matches signature files to a continually-updated
database, also generates false positives. Even if
heuristics and signature-identification techniques were
to vastly improve, false-positives cannot be completely
avoided in heuristic models. This is an unacceptable
scenario when lives are at risk.

Furthermore, there is a “false-positive paradox,”
meaning that the odds of a false-positive can, ironically,
be greater than the odds of a true threat.1

False Positives

page 7

The bottom line: heuristic cyber protection is not the
right solution for securing in-vehicle systems and
embedded systems. Even if there is a driver override
option, it could not be triggered fast enough when split-
second decisions are critical.

“Decision lag” is a term used by economists to refer to
a government’s slow reaction to economic events. In
a similar fashion, “remediation lag” refers to a delayed
time-to-detection, the window of time it takes to
discover a security breach or vulnerability. Cyberattacks
exploit hidden security vulnerabilities in the target’s
software. In vehicles and fleets, when an attack is
detected, it could take weeks to identify the vulnerability
that was exploited, remediate it, run tests, and deploy
a security update in all affected vehicles. According
to Gartner, the average time to detect a breach in the
Americas is 99 days, and the average cost is $4M.2

The biggest problem resulting from that remediation
lag is the security gap created when ECUs with known
vulnerabilities remain open to attacks while waiting for a
fix. Hackers know they can take advantage
of this delay and launch repeated attacks exploiting the
same vulnerability. A bombardment of attacks during
this period of time can create irreversible damage to
a brand.

Preventing exploits of unknown vulnerabilities (i.e. zero-
day attacks) in the ECU code is key to avoiding this
lag. Enterprise zero-day attack-protection strategies
typically include statistical and behavioral heuristics plus
signature identification, which is functionally heuristic.3

Remediation
Lag

Zero-Day
Attacks

page 8page 4

page 9

The problem with using heuristics to combat zero-
day threats is not false positives but false negatives.
Heuristic- and signature-based security solutions too
often fail to detect and block unknown malware.
They are more effective when used in combination, but
given their margin of error, they cannot always identify
novel attacks. Further, enterprise zero-day protection
technologies are compute-intensive. They require strong
servers or server farms for the quarantine, sandboxing
and analysis process.4 We claim that such technologies
conflict with the vehicle performance requirements, if
they are executed on the cloud, and that they cannot
run locally on the car’s systems, due to limited CPU
and memory resources. Zero-day attacks present an
extreme challenge to vehicle cybersecurity.

When carmakers deploy cybersecurity in resource-
constrained networks and ECUs, performance is
always a concern. It is important to determine network
overload and computational and RAM footprints to
understand how much strain the security processing will
put on the bus, the CPU, and the memory. Significant
overhead may dictate that hardware must be added
to the vehicle's networks and ECUs in order to meet
performance requirements. Physical segregation can
also add to the hardware footprint, further draining
limited resources and increasing the cost of the car’s bill
of materials.

Penetration testing to identify vulnerabilities is typically
done when the ECU software is ready to be deployed
on a target system. By the time a flaw is found, time-to-
market can be increased and substantial costs involved.

Slowed
Performance

Delayed Pen
Testing

page 10

Avoiding the Security Constraints

The obstacles that hinder vehicle cybersecurity must
be addressed to achieve the level of safety and
performance needed in connected and autonomous
cars. With this goal in mind, Karamba Security has
identified three primary defense strategies:

1. Whitelisting of network messages,
 ECU applications and control flow
2. Embedding native security
3. Zero-day protection:
 Eliminating the need for security updates

To overcome multiple challenges specific to vehicles,
the backbone of cybersecurity should be deterministic,
not heuristic. When filtering incoming data or messages,
predictive algorithms will lead to false positives,
remediation lag, and failure to prevent zero-day attacks.
For these reasons, deterministic security built on the
principle of multi-dimensional whitelisting is ideal.

The National Highway Traffic Safety Administration
(NHTSA) cybersecurity guidelines state, “NHTSA is
focusing on solutions to harden the vehicle’s electronic
architecture against potential attacks…” The guidelines
specifically recommend “strict whitelist-based filtering
of message flows,” as a means to harden the vehicle
computer environment.”5 Karamba Security has taken
that concept further, to whitelist all network messages,
legitimate runnable binaries and in-memory function call
sequences.

Whitelisting
of Messages,
Applications
and Control
Flow

page 11

A second mitigation is to strictly follow the SAE
International guideline to install cybersecurity
programs during the build process of the vehicle’s
computer systems.6 Embedding cybersecurity in the
ECU firmware enables the car to protect itself from
cyberattacks, without relying on cloud connectivity,
or cloud-to-car response time.

Native security can also be more proactive, since it
prevents the attack before the ECU is compromised,
i.e. before the attacker succeeds to hack the car and
issue malicious commands over the car’s network.

Vehicle cybersecurity should be designed to run
continuously and effectively without relying on software
updates. As known, it can take weeks, even months,
to isolate a software vulnerability and run a fix through
the entire process, from development to deployment.
If repetitive attacks target a specific car model and
affect passenger safety during this vulnerable period,
the car’s brand will suffer severe damage that may lead
to irreversible consequences.

To avoid these consequences, OEMs and Tier-1
suppliers need to deploy vehicle security protection that
is not dependent on updates. In the following sections,
we will explain how this can be achieved.

In addition, if penetration testing can be carried out
on virtualized instances of vehicle ECUs, much of the
preventive measures can be taken during the system
design phase, eliminating vulnerabilities in advance.

Embedding
Native Security

Eliminating
the Need
for Security
Updates

page 12

Part II: Turning Strategies
into Best-Practice Protection

To this point, we have discussed the challenges of
securing vehicle networks and computer systems from
a theoretical perspective. In the following pages, we will
look at how the conclusions drawn above can be put
into practice. We will demonstrate a new Autonomous
Security model that effectively removes the security
constraints to create self-defending cars.
More importantly, you will learn how this type of security
can autonomously protect vehicle networks and ECUs
against hacking attempts, including zero-day attacks.
Autonomous Security removes the cybersecurity burden
from developers, while meeting design-build best
practices and vehicle requirements.

Unlike enterprise network and server systems, vehicle
systems are not user-changeable. This means that the
network messages and binary code in an in-vehicle
ECU can be sealed to prevent message spoofing or
unauthorized changes, i.e., attempts to exploit security
vulnerabilities. Only the OEM would be able to make
modifications to the car network and ECUs, when
needed.

In this way, cybersecurity remains stable over the life of
the vehicle, eliminating the need for continuous malware
signature updates and security patches.

Embedding
Native Security
in ECUs

page 13

As long as performance impact is negligible, this
approach also fits together with the best practice of
installing security software in the original components.

As previously noted, multi-dimensional whitelisting is an
effective approach to vehicle cybersecurity.
NHTSA also advises, “Developer access should
be limited or eliminated if there is no foreseeable
operational reason for the continued access to an
ECU for deployed units.”7 As manufacturers strive to
limit post-deployment modifications, hardening the
vehicle networks and ECUs offers the added benefit of
a more stable environment that is easier to secure over
the life of the vehicle. Karamba Security has developed
a blueprint for this purpose. This model for in-vehicle
security incorporates the following features:
• In-memory validation
• Whitelisting of executables
• Authentication of network messages
• Enabling OEM-sourced updates
• Protection on hypervisors

In-memory validation monitors the program execution
flow to ensure it remains within the expected execution
points. If a function call or a return pointer deviates from
the execution flow which was automatically mapped
during the ECU build process, the call is blocked —
before any damage occurs.

When such binary function-call mapping is embedded
into the ECU’s software, security decisions are made
locally.

Hardening
ECUs to
Factory Settings

In-Memory
Validation

page 14

The ECU is no longer a potential attack surface; It
becomes a self-defending device, impervious
to in-memory attacks like buffer overflows and heap
overflows. There is no need for malware signature
updates since the in-memory security policy is
generated based on factory settings.
VM In-Memory Validation: In the case of a virtual
machine (VM), this protection blocks guest attacks from
exploiting in-memory vulnerabilities at the hypervisor
level. In-memory validation blocks any attempt to
perform illegitimate functions or download malware.

ECU-hardening should also include a whitelist
enforcement component that integrates with the
OS program-loading and file-access services.
All executables can be checked against the whitelist
including files (operating system and applications),
shared objects (libraries), and scripts. Each time any
binary is loaded, its signature can be calculated and
compared to a database of approved application
signatures.8

If the binary is on the whitelist, it is permitted to run.
If a binary’s signature is not on the whitelist, it is not
a legitimate component originating within the ECU's
factory settings. As soon as malicious code attempts to
be loaded to memory, the security filter stops the binary
from loading. This includes protection against attacks
that drop malware onto the ECU flash storage.
VM Executable Whitelisting: In the case of a VM,
whitelisting blocks guest malware from a drop-and-
execute attack on the hypervisor.

Whitelisting
Executables

page 15

At the inter-ECU level, a new approach is called for that
overcomes technological and safety constraints and
protects the vehicle by hardening in-vehicle networks
against unauthenticated CAN activity.

It is essential that this is done without adding to the
network load.

In addition, the technology cannot entail custom
implementations on the part of OEM developers which
would add complexity and additional expenditures.

Authentication
of Network
Messages

page 16

Cybersecurity “overkill” is not practical and can
decrease security. If the protection mechanism is
designed to block all changes blindly, it would block
legitimate ECU software updates made by the OEM.
When a feature is added or enhanced, the security
solution must be flexible enough to allow these updates
and generate corresponding policy changes. Only then
would protection continue without false positives.

The OEM update mechanism should be able to
incorporate new validation rules seamlessly any time
the ECU software is updated, so that new components
are whitelisted in the same secure manner as they were
during the original build.

Hypervisors allow VMs to be partitioned in a way that
enables defining safety certifications for each VM
independently. This means non-critical components
do not require the same level of certification as critical
components, which can take a heavy toll in terms of
time and expense.

Hypervisor configurations also need protection for their
unique environment. For starters, vulnerabilities in the
hypervisor itself can cause breaks in the segregation
that it was designed to provide.

Adding to the complexity, software programs run on
various operating systems on the same hardware
via the hypervisor’s connected VMs. These software
applications are often subject to attacks involving
unauthorized access resulting from faulty drivers or
maliciously-altered permission settings. 9

Protection on
Hypervisors

Enabling
OEM-Sourced
Updates

page 17

As shown by Intel’s Meltdown vulnerability 10 – an attack
on the ECU kernel in a virtualized stack – a hacker could
execute an API call to the hypervisor from a spoofed VM
that masquerades as a legitimate VM.

To combat these threats, cybersecurity is needed on
individual applications, on guest operating systems,
and on the hypervisor, as illustrated by the circles in
the diagram.

Custom-designed “sensor” nodes in a wide variety of
in-vehicle ECU deployments around the globe – both
real and virtualized – enable the following actions:
• Sniffing the ECUs and their networks (CPU, control
 logic and memory activity as well as messaging)
• Collecting real and potential threat data
• Processing the findings to create the knowledge and
 strategies needed by OEMs and Tier-1 suppliers to
 prevent the observed exploits.

Hypervisor Configuration – Protection Needs

Threat
Landscape
Analysis

page 18

Automating Protection for
the Life of the Car

With the parameters of an effective vehicle security
solution defined, the next step is to ensure the build
process meets the security requirements — without
placing a burden on OEMs or Tier-1/Tier-2 suppliers.
ECU developers in all tiers should not be required
to learn how to deploy, configure, and manage the
cybersecurity solution; nor to supply the cybersecurity
developer with ECU code.

It is also important to deploy security that is lightweight,
since most resource-constrained ECUs are overloaded.
Any security process that significantly increases the
usage of the ECU RAM or significantly degrades CPU
performance will have an effect on ECU operation and
may result in compromising safety. In low-cost ECUs,
heavy validation processing could cause message
delays and collisions.

For these reasons, Karamba Security recommends
a light-weight, embedded solution that automatically
generates the security policy during the software build
process. Ideally this security policy is then encrypted
and signed with a private key to prevent malicious
tampering. The signed security policy and the public key
verifying its authenticity should then be embedded in
the ECU.

page 19

As an added benefit, embedding native security into the
binary code minimizes overhead so there is negligible
performance penalty.

To accomplish this, the security program must trace
the ECU’s factory settings in multiple layers. In this
way, each layer of protection seals the vehicle’s ECU
software against different types of attacks.

In the following sections, we will examine the process
layer by layer.

page 20

The first layer should generate the security policy
used by the In-Memory Validation engine. A static
analysis engine is used to analyze all binaries (not the
source code) of the vehicle’s ECU. The engine then
automatically maps all valid function-call sequences
and call locations in the system. With this call graph,
the In-Memory Validation engine ensures in run-time
that only legitimate function calls are executed.
It also blocks any attempt to load malware directly
into memory.

First Layer:
In-Memory
Hardening

In-Memory Validation

page 21

The second step is to generate the security policy
used by an application whitelisting enforcement engine
All binaries that are part of the vehicle’s software
are automatically scanned. These binaries provide a
complete list of all the programs and scripts that are
allowed to run on the ECU.

For each binary file in the system, the security program
then creates a unique signature, based on the content
of the file. These binary signatures ensure a closed
authentication test during runtime.

Second Layer:
Whitelisting
Executables

To illustrate, if an attacker were to inject malicious code
into the memory of a process, the stack would show
a call or a return to a location that is not part of the
original call sequence. If the program tries to switch to
an unknown location or address, In-Memory Validation
would detect this deviation and block the execution —
before the hackers could cause any damage to
the vehicle or its embedded systems.

Finally, an ultra-light network security solution
authenticates communication between ECUs—without
slowing performance.

From message-type analysis to in-place message
encryption, the Authentication-Encryption (AE)
mechanism has been designed to maximize protection
while minimizing the burden on the vehicle’s limited-
resource systems.

The result is zero network overhead in the vehicle, and
a negligible impact on latency.

Third Layer:
Authenticating
In-Vehicle
Messages

page 22

Measuring Performance

Vehicle cybersecurity protection cannot be added at
the expense of slowing performance. Any proposed
solution must be tested for acceptable levels of added
processing associated with validation tasks. There are
also additional memory requirements for data structures
accessed by the validation code.

For in-vehicle-network protection, latency is the key
indicator of performance impact. For ECUs, impact
can be estimated by a set of performance indicators
including CPU-utilization rate changes, an increase in
the root-file system size, and a decrease in available
RAM. In actual system-performance tests, however, it
is essential to ensure measurements remain within the
product performance specification’s allowed limits after
security is added.

page 23

Incident Response and
Forensic Reporting

Autonomous Security mechanism automatically issues
instantaneous threat alerts when an attack is detected.
These alerts identify which system is being attacked to
inform the incident response team.

In accordance with NHTSA best practices, Autonomous
Security solutions record any anomalous activity or
attempts to access ECUs. These incident logs are
then sent to forensic experts for analysis.11 This data
should also be shared with the Auto-ISAC community.12
A heuristic defense system helps ECU developers
better understand the types of attacks targeting their
programs, so that they can patch any vulnerabilities in
future iterations of their product.

With this goal in mind, the following elements are
processed and analyzed to create a detailed threat
analysis report:
• File system operations
• Network operations
• Peripheral resource operations (e.g. CAN bus, DVD,
 CD-ROM, and USB ports)
• Internal process communications
• Process and thread operations
• Debugging attempts

page 24

This information is used to create analytic reports
that include all forensic data that was collected on the
system around the time of the attack, including:

• The exploited process
• External connections involved (i.e. a peripheral port
 or network communication)
• The type of attack (malicious application,
 in-memory code injection, etc.)
• The malicious binary trails in the file system

This type of data enables ECU software developers
to identify and fix the vulnerabilities that leave vehicle
systems exposed to potential threats. Records of
malicious attacks are kept for future reference and for
cross-reference with other attacks.

page 25

Vehicle cybersecurity must empower the security
software to protect itself against any attempts to modify
its policies, remove enforcement engines, or hide
malicious activities. This type of anti-tampering can be
achieved through a combination of software and, when
available, hardware capabilities that verify the integrity
of the policies and protection mechanisms.
As detailed in the illustration, tampering protections
ensure that every ECU is a self-defending device.

Anti-Tampering

Anti-Tampering Measures

page 26

Ease of Deployment

Advantages of
Hardening the ECUs

Another practical aspect of vehicle Autonomous
Security relates to the time and budget constraints
under which software developers operate. When
a cybersecurity solution automatically develops
customized security policies, there is no prerequisite
training for the ECU development team. By the same
token, the cybersecurity development team does not
need to learn the ECU implementations.

Upload of an ECU image is all that is needed on the part
of an OEM or Tier-1 supplier in order to participate in
and benefit from shared threat-landscape analysis data.

By following these security guidelines, developers can
achieve unparalleled protection of vehicle computer
networks and ECUs, with negligible performance impact
and without adding to the ECU developer’s workload.

page 27

A deterministic solution built on these design principals
provides many advantages:

• Stops foreign code and invalid function calls

• Stops network spoofing attempts

• Eliminates any risk of false positives

• Supports all ECUs as an embedded solution that’s
 OS and CPU agnostic

• Minimizes network, CPU and memory overhead to
 ensure optimal performance

• Seals the ECU binaries

• Protects software running on hypervisor VMs to
 prevent unauthorized access attacks

• Automates the security development process,
 reducing the time to market

• Expedites retrofitting

• Secures embedded systems over the lifetime
 of the vehicle

• Installs and operates without the need for developer
 resources or ongoing administration

• Operates 24/7 without any human intervention or
 Internet connectivity

• Provides immunity regardless of unpatched
 vulnerabilities

• Blocks hacking attempts instantaneously, eliminating
 time-to-detection delays

• Delivers detailed threat data for comprehensive
 forensic analysis

page 28

The Big Picture:
Autonomous Security

Implicit in the Autonomous Security model is the peace
of mind that comes with 24/7 protection, with no
updates or manual inspections required. It is essential
to give drivers and passengers the confidence of
continuous security, regardless of their mobility choices.

For Karamba, Autonomous Security also means a
simple process to embed security into the vehicle. Deep
insights on ECU threat levels based on intelligence
services during the development phase are translated
into seamless image-level hardening. The protection
of the ECU and in-vehicle communication is added
automatically during software builds, with no developer
intervention or impact on the production process.

Recognized for its safety-related initiatives, Karamba
Security received a Best Cybersecurity Product/Service
Award from TU-Automotive in both 2017 and 2018, and
was selected as a Gartner Cool Vendor 2018 for IoT
security.

Karamba's portfolio of offerings has been designed to
assure Autonomous Security.

Always-
On Threat
Protection

Many Facets
of Autonomy

Award-Winning
Innovation

page 29

Carwall®
Embeds vehicle ECU hardening within the image,
assuring runtime integrity with zero false positives
and negligible performance impact

SafeCAN®
Seamlessly secures In-Vehicle Networks against
unauthenticated CAN commands from compromised
ECUs or OBDII dongles, with no network overhead

ThreatHiveTM

A unique, cost-reducing tool for exposing ECU
vulnerabilities early in the design-and-development
process, by leveraging the intelligence gained from
analyzing real cyber attacks

Research & Consulting
Enables OEMs and Tier-1 suppliers to minimize the
security risks of their products with threat assessment,
defense analysis, and penetration testing

page 30

References

1. en.wikipedia.org/wiki/False_positive_paradox

2. The Gartner Group, “The Gartner IT Security Approach for the Digital Age”,
June 12, 2017.

3. Kaur, R.; Singh, M., "Efficient hybrid technique for detecting zero-day
polymorphic worms" (2014) in Hammarberg D.,
“The Best Defenses Against Zero-day Exploits for Various-sized Organizations”,
Sept. 2014, p.3.

4. Yao, et al, “Hopf Bifurcation in an SEIDQV Worm Propagation Model with
Quarantine Strategy” (2012) in Hammarberg, op cit.

5. NHTSA, “Cybersecurity Best Practices for Modern Vehicles”, Oct. 2016, p.19,
Sect. 6.7.7.

6. Boran, L., SAE International J3061, “Overview of Recommended Practice;
Cybersecurity Guidebook for cyber-physical vehicle systems”, January 2016.

7. Ibid, p.17, Sect. 6.7.1.

8. A cryptographic hash is like a signature for a text or a data file. Hash is a
one-way function; it cannot be decrypted. This makes it suitable for password
validation, challenge hash authentication, anti-tampering, and digital signatures.

page 31

9. CVE Details – for example, KVM-related vulnerabilities: https://www.cvedetails.
com/google-search-results.php?q=linux+kvm&sa=Search.

10. https://www.us-cert.gov/ncas/alerts/TA18-004A; https://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=2017-5754: “Systems with microprocessors utilizing
speculative execution and indirect branch prediction may allow unauthorized
disclosure of information to an attacker with local user access via a side-
channel analysis of the data cache.”

11. National Highway Traffic Safety Administration. (2016, October). Cybersecurity
best practices for modern vehicles. (Report No. DOT HS 812 333). Washington,
DC: Author. p.20, Sect. 6.7.9.

12. Automotive Information Sharing and Analysis Center,
https://www.automotiveisac.com.

page 32

Karamba Security provides Autonomous Security,
the industry-leading end-to-end preventative solutions
that are designed, from the ground up, for resource-
constrained environments.

This award-winning self-protecting solution provides
automotive cybersecurity that is built into the embedded
software. Karamba prevents zero-day cyberattacks with
zero false positives while assuring negligible performance
impact. Karamba technology has proven seamless
integration into the software development lifecycle, which
fits modern architectures in vehicles and IOT devices.

Karamba Security is led by a balanced executive team
of cybersecurity experts and seasoned entrepreneurs.

www.karambasecurity.com | contact@karambasecurity.com

Karamba Security USA
Tel: +1 248 574 5171

Karamba Security Germany
Tel: +49 151 1471 6088

Karamba Security Israel
Tel: +972 9 88 66 113

