

Research Articles: Behavioral/Cognitive

Thalamocortical mechanisms for nostalgiainduced analgesia

https://doi.org/10.1523/JNEUROSCI.2123-21.2022

Cite as: J. Neurosci 2022; 10.1523/JNEUROSCI.2123-21.2022

Received: 23 October 2021 Revised: 26 December 2021 Accepted: 7 February 2022

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2022 the authors

1	Thalamocortical mechanisms for nostalgia-induced analgesia
2	Ming Zhang (张明) ^{1,2} , Ziyan Yang (杨紫嫣) ^{1,2} , Jiahui Zhong ³ , Yuqi Zhang ^{1,2} , Xiaomin
3	Lin ¹ , Huajian Cai (蔡华检) ^{1,2*} , Yazhuo Kong ^{1,2,4*}
4	¹ CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences,
5	Beijing, 100101, China;
6	² Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China;
7	³ Research Centre of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029,
8	China
9	⁴ Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical
10	Neurosciences, University of Oxford, OX3 9DU, Oxford, UK
11	Abbreviated title: Nostalgic analgesia mechanisms
12	*Correspondence: Huajian Cai & Yazhuo Kong
13	Prof. Huajian Cai
14	Email: caihj@psych.ac.cn
15	Telephone number: 086 010-64877240
16	Address: 16 Lincui Road, Chaoyang District, Beijing 100101, China
17	Prof. Yazhuo Kong
18	Email: kongyz@psych.ac.cn
19	Telephone number: 086 010-64864958
20	Address: 16 Lincui Road, Chaoyang District, Beijing 100101, China

21 Number of pages: 35

- 22 Number of figures: 7
- 23 Number of words for abstract: 163
- 24 Number of words for introduction: 615
- 25 Number of words for discussion: 1391
- 26 Conflict of interest statement: The authors declare no conflict of interest.
- 27

28 Acknowledgements

- 29 This research was supported by the National Natural Science Foundation of China
- 30 (32100861, 81871436, 82072010, 82030121, 32000775), the National Social Science
- 31 Fund of China (17ZDA324), and the Magnetic Resonance Imaging Research Center,
- 32 Institute of Psychology, CAS.
- 33

34 Author contributions

- 35 M.Z., Z.Y., H.C., and Y.K. designed research; J.Z, M.Z., Y.Z., and X.L. performed
- 36 research; M.Z. and Y.K. analyzed data; M.Z. wrote the first draft of the paper; M.Z.,
- 37 Z.Y., H.C., and Y.K. edited the paper.

38 Abstract

39	As a predominately positive emotion, nostalgia serves various adaptive functions,
40	including a recently revealed analgesic effect. The current fMRI study aimed to
41	explore the neural mechanisms underlying the nostalgia-induced analgesic effect on
42	noxious thermal stimuli of different intensities. Human participants' (males and
43	females) behavior results showed that the nostalgia paradigm significantly reduced
44	participants' perception of pain, particularly at low pain intensities. fMRI analysis
45	revealed that analgesia was related to decreased brain activity in pain-related brain
46	regions, including the lingual and parahippocampal gyrus. Notably, anterior thalamic
47	activation during the nostalgia stage predicted posterior parietal thalamus activation
48	during the pain stage, suggesting that the thalamus might play a key role as a central
49	functional linkage in the analgesic effect. Moreover, while thalamus-PAG functional
50	connectivity was found to be related to nostalgic strength, PAG-dlPFC functional
51	connectivity was found to be associated with pain perception, suggesting possible
52	analgesic modulatory pathways. These findings demonstrate the analgesic effect of
53	nostalgia and, more importantly, shed light on its neural mechanism.
54	Keywords: pain, nostalgia, analgesia, thalamus, PAG

55 Significance Statement

- 56 Nostalgia is known to reduce individuals' perception of physical pain. The underlying
- 57 brain mechanisms, however, are unclear. Our study found that the thalamus plays a
- 58 key role as a functional linkage between nostalgia and pain, suggesting a possible
- 59 analgesic modulatory mechanism of nostalgia. These findings have implications for
- 60 the underlying brain mechanisms of psychological analgesia.

61 Introduction

62	Physical pain is one of the most negative physiological experiences (Hein et
63	al., 2018). A large body of research exists on how to relieve it. Pharmacological
64	analgesics have been established as a typical way to relieve pain; however, they are
65	potentially addictive (Chen et al., 2014). As a result, non-pharmacological analgesics,
66	such as electrical stimulation and acupuncture, have received increased attention
67	(Coutaux, 2017). Numerous studies have shown that a variety of psychological
68	treatments can manifest analgesic effects (Schwarz et al., 2016), including placebo
69	(Eippert et al., 2009), reward acquisition (Becker et al., 2013), meditation (Zeidan and
70	Vago, 2016), and nostalgia (Kersten et al., 2020). In the current study, we were
71	concerned with the analgesic role of nostalgia and its underlying brain mechanism.
72	Nostalgia, a sentimental longing for one's past, is a self-conscious, bittersweet,
72 73	Nostalgia, a sentimental longing for one's past, is a self-conscious, bittersweet, but predominantly positive social emotion (Hepper et al., 2014; Sedikides et al., 2015).
72 73 74	Nostalgia, a sentimental longing for one's past, is a self-conscious, bittersweet, but predominantly positive social emotion (Hepper et al., 2014; Sedikides et al., 2015). Nostalgia is a prevalent phenomenon triggered by various external cues, such as
72 73 74 75	Nostalgia, a sentimental longing for one's past, is a self-conscious, bittersweet, but predominantly positive social emotion (Hepper et al., 2014; Sedikides et al., 2015). Nostalgia is a prevalent phenomenon triggered by various external cues, such as nostalgic music, odors, and pictures (Sedikides et al., 2015). Nostalgia is adaptive and
72 73 74 75 76	Nostalgia, a sentimental longing for one's past, is a self-conscious, bittersweet, but predominantly positive social emotion (Hepper et al., 2014; Sedikides et al., 2015). Nostalgia is a prevalent phenomenon triggered by various external cues, such as nostalgic music, odors, and pictures (Sedikides et al., 2015). Nostalgia is adaptive and can promote psychological well-being (Sedikides and Wildschut, 2016), improve
72 73 74 75 76 77	Nostalgia, a sentimental longing for one's past, is a self-conscious, bittersweet, but predominantly positive social emotion (Hepper et al., 2014; Sedikides et al., 2015). Nostalgia is a prevalent phenomenon triggered by various external cues, such as nostalgic music, odors, and pictures (Sedikides et al., 2015). Nostalgia is adaptive and can promote psychological well-being (Sedikides and Wildschut, 2016), improve physical comfort (Zhou et al., 2012), and reduce distress (Hussain and Alhabash,
72 73 74 75 76 77 78	Nostalgia, a sentimental longing for one's past, is a self-conscious, bittersweet, but predominantly positive social emotion (Hepper et al., 2014; Sedikides et al., 2015). Nostalgia is a prevalent phenomenon triggered by various external cues, such as nostalgic music, odors, and pictures (Sedikides et al., 2015). Nostalgia is adaptive and can promote psychological well-being (Sedikides and Wildschut, 2016), improve physical comfort (Zhou et al., 2012), and reduce distress (Hussain and Alhabash, 2020). Relevant to our current study, nostalgia has been shown to relieve pain
72 73 74 75 76 77 78 79	Nostalgia, a sentimental longing for one's past, is a self-conscious, bittersweet, but predominantly positive social emotion (Hepper et al., 2014; Sedikides et al., 2015). Nostalgia is a prevalent phenomenon triggered by various external cues, such as nostalgic music, odors, and pictures (Sedikides et al., 2015). Nostalgia is adaptive and can promote psychological well-being (Sedikides and Wildschut, 2016), improve physical comfort (Zhou et al., 2012), and reduce distress (Hussain and Alhabash, 2020). Relevant to our current study, nostalgia has been shown to relieve pain (Kersten et al., 2020). For instance, one study found that nostalgia reduced
72 73 74 75 76 77 78 79 80	Nostalgia, a sentimental longing for one's past, is a self-conscious, bittersweet, but predominantly positive social emotion (Hepper et al., 2014; Sedikides et al., 2015). Nostalgia is a prevalent phenomenon triggered by various external cues, such as nostalgic music, odors, and pictures (Sedikides et al., 2015). Nostalgia is adaptive and can promote psychological well-being (Sedikides and Wildschut, 2016), improve physical comfort (Zhou et al., 2012), and reduce distress (Hussain and Alhabash, 2020). Relevant to our current study, nostalgia has been shown to relieve pain (Kersten et al., 2020). For instance, one study found that nostalgia reduced temperature-induced pain by increasing physical warmth (Zhou et al., 2012); another

82	and made them more tolerant in a pressure algometer task (Kersten et al., 2020).
83	However, the brain mechanism underlying the analgesic effect of nostalgia remains
84	elusive.
85	Nostalgia is a complicated emotion involving self, autobiographical memory,
86	and reward (Barrett et al., 2010; Oba et al., 2016). As a result, many brain areas
87	relevant to these processes are implicated in nostalgia, including self-related areas
88	such as the supramarginal gyrus (Tsakiris et al., 2007), autobiographic
89	memory-related areas such as the hippocampus and parahippocampus,
90	rewarding-related areas such as the ventral striatum, and emotion-related areas such
91	as the limbic system (e.g., the amygdala and hippocampus) and the para-limbic
92	system (e.g., the insular and frontal orbital cortex; Apaolaza-Ibantilde et al., 2010).
93	Pain is also implicated in broad areas of the brain, including the primary
94	somatosensory area SI, the secondary somatosensory area SII (Oertel et al., 2008), the
95	insular cortex, dorsomedial thalamus, amygdala (Panksepp, 2003), lingual gyrus (Zaki
96	et al., 2007; Shimo et al., 2011), parahippocampal gyrus, and anterior cingulate cortex
97	(Oertel et al., 2008). Notably, as the gateway to the cerebral cortex, the thalamus is a
98	key relay station for transmitting nociceptive information, controlling the key to pain
99	consciousness (Yen and Lu, 2013). Furthermore, previous connectivity analyses have
100	found that prefrontal, parahippocampal, and brainstem structures are involved in the
101	modulation of emotion when experiencing pain (Roy et al., 2009), suggesting that
102	nostalgia may modulate pain via these top-down pathways.

103	In the current investigation, we examined whether there would be an analgesic
104	effect of nostalgia under various pain intensities and, if so, what the underlying brain
105	mechanism could be. The experimental paradigm included a nostalgic picture (vs. a
106	control one) to induce nostalgia sessions followed by pain sessions with low- and
107	high-intensity nociceptive thermal stimuli. Although the existing nostalgia-related
108	neuroimaging research did not allow us to make an exact hypothesis, some tentative
109	expectations could be derived from the role of the thalamocortical system in
110	modulating pain (Qin et al., 2020). Specifically, after experiencing nostalgia, the
111	thalamocortical system might integrate outside signals (i.e., nostalgic information)
112	into the current mental state (i.e., pain perception) (Shih et al., 2019); and then,
113	nostalgic analgesia might be induced by top-down modulation from the well-known
114	pain descending modulatory regions, such as the brainstem (Oliva et al., 2020).
115	Materials and Methods
116	Participants. A priori power analysis demonstrated that a sample size of 34
117	would allow for the detection of an effect size ($f = 0.25$) with 80% power at an alpha
118	of 0.05 for the repeated measures with two within-participant factors (Kersten et al.,
119	2020). A total of 34 right-handed participants (18 females, age = 21.50 ± 2.05 years,
120	range = 18–25 years) took part in this study. Participants were screened before taking
121	part in the study using the Pain Sensitivity Scale (PSS, e.g., "Imagine you burn your
122	tongue on a very hot drink"; responses were rated on a scale from $1 = "no pain"$ to 10
123	= "pain as bad as it could be"; Ruscheweyh et al., 2009; Quan et al., 2018) and the

124	Southampton Nostalgia Scale (SNS, e.g., "How valuable is nostalgia for you?";
125	responses were rated on a scale from 1 = "Not at all" to 7 = "Very much"; Routledge
126	et al., 2008; Barrett et al., 2010). Participants with a mean PSS score \geq 3.1 (4.7 ± 1.6
127	means PSQ-moderate, Ruscheweyh et al., 2009) and a mean SNS score $\geq 4 $ (< 4
128	means low nostalgia-inclination, Sugimori et al., 2020) were selected to increase the
129	chance that the experimental manipulation would be effective. The selected
130	participants had no neurological or psychiatric history. They were instructed not to
131	ingest any alcohol or pain medicine for at least four hours before participating in the
132	experiment (Mercer and Holder, 1997; Kanarek and Carrington, 2004). They
133	completed a thorough written and verbally informed consent process after arriving at
134	the lab. Before entering the MRI scanner, they completed a magnetic resonance
135	imaging research center questionnaire that required all individuals to report their
136	current health status and medical records, including physical injuries and mental
137	disorders. All participants were fully debriefed and received RMB 150 as
138	compensation for participating in the study. The experimental procedures were
139	approved by the Institutional Review Board of the Institute of Psychology at the
140	Chinese Academy of Sciences and were performed in accordance with the Helsinki
141	Declaration.
142	Materials. The study used 26 nostalgic images and 26 control images (see
143	Figure 1 for material samples) that were successfully used to induce nostalgic feelings
144	in a previous study (for more details, see Yang et al., 2021). The nostalgic pictures

145	depicted objects or scenes from childhood, whereas the control pictures depicted
146	corresponding objects or scenes from modern life. In the current study, the visual
147	stimuli (visual angle $11.18^{\circ} \times 10.20^{\circ}$) were presented on a uniform black background
148	and displayed via a video projector (frequency 60 Hz, resolution 1920 \times 1080) onto a
149	rear-projection screen mounted at the head of the scanner bore. Participants viewed
150	the stimuli through a mirror on a head coil positioned over their eyes.
151	Thermal pain stimuli. All thermal pain stimuli were produced by a Medoc 9
152	cm ² contact heat-evoked potential stimulator (CHEPS). In the scanner, the heat pain
153	threshold was assessed first to define the low and high intensities (i.e., threshold
154	temperature plus 1°C vs. 3°C, i.e., 43.35 ± 1.67 °C vs. 45.35 ± 1.67 °C; Dellapina et al.,
155	2011; Tabry et al., 2020). The heat pain threshold was assessed on the right forearm,
156	10 cm above the wrist, with a three-second inter-stimulus interval and a 40°C/second
157	rate of temperature rise. Participants reported the pain they experienced for the brief
158	thermal stimuli using a numerical pain rating scale ranging from 0 to $10 (0 = no)$
159	feeling, $1 = a$ feeling of warmth, $2 = a$ feeling of heat, $3 = a$ feeling of hotness, $4 = just$
160	a feeling of pain, $10 = a$ feeling of pain as bad as it could be. Values from 4 to 10
161	gradually increased the degree of pain; Hu et al., 2014; Hu and Iannetti, 2019; Zhang
162	et al., 2021). The mean intensity that participants reported as the point where they first
163	began to feel pain (i.e., number 4) three times over was used as the threshold
164	temperature. In the experiment, the pain ratings of the thermal stimuli were measured

9

based on the subjects' responses to 52 heat pulses at either the lower or higherintensities.

167	Procedure. Stimulus presentation and behavioral response collection were
168	controlled by E-Prime 2.0 (Psychological Software Tools, Inc., Pittsburgh, PA, USA)
169	Participants performed a practice experiment outside the MRI scanner using the same
170	procedure as in the actual experiment. There were 52 trials performed for the
171	conditions (nostalgia vs. control) and intensities (low vs. high) for a total of three
172	sessions. Participants were instructed to view these pictures carefully before starting
173	each session. The trial sequence in each session was pseudo-randomized with a trial
174	time of 34 s. Each trial proceeded as follows (see Figure 1A). First, a white fixation
175	cross was presented for 0.9 s, and then one of the two cues (nostalgia or control) was
176	presented for 8 s. Subsequently, a white fixation cross was presented for 0.1 s; at the
177	same time, a heat pulse (low or high) was delivered to the right forearm (for 3 s). A
178	white fixation cross was then presented for 7 s. After that, participants were asked to
179	perceive the pain they just felt and to provide pain ratings for the brief thermal stimuli
180	using the numerical pain rating scale (displayed for 5 s) ranging from 0 ("no pain") to
181	10 ("pain as bad as it can be"), with 4 denoting the threshold of pain, using their left
182	hand on a response box. Subsequently, a black background screen appeared for 10 s
183	before the next trial began.
184	Finally, outside the MRI machine, a manipulation check was performed with

185 participants being asked to rate the nostalgic strength of each picture ("To what extent

186 does this picture make you feel nostalgic? Responses were rated from 1 = "not at all" 187 to 5 = "very much"). To examine the pleasantness of the nostalgia pictures, we also 188 asked participants to rate each picture ("To what extent does this picture make you feel 189 pleasant?" Responses were rated from 1 = "very unpleasant" to 5 = "very pleasant") 190 (Oba et al., 2016). 191 Data acquisition. A GE Discovery MR750 3T scanner (GE Medical Systems, 192 Milwaukee, Wisconsin, USA) in combination with an 8-channel head matrix coil was 193 used for functional brain imaging in the present study. The participant's head was 194 securely but comfortably stabilized with firm foam padding. Functional data were 195 acquired using an echo-planar imaging (EPI) sequence using an axial slice orientation 196 (37 slices, TR/TE = 2000/30 ms, slice thickness = 3.5 mm, FOV = 224 mm, flip angle197 $=90^{\circ}$, matrix size: 64×64) covering the whole brain. A high-resolution T1-weighted 198 3D SPGR sequence was acquired between the first and second fMRI sessions (192 199 slices, TR/TE = 6.7/Min Full ms, slice thickness = 1.0 mm, FOV = 256 mm, flip 200 angle = 12° , matrix = 256×256). 201 Data analysis. Data were analyzed using the FEAT (FMRI Expert Analysis 202 Tool) Version 6.00, part of FSL (FMRIB's Software Library, 203 https://www.fmrib.ox.ac.uk/fsl). At the individual level, the following pre-processing 204 steps were applied: motion correction using MCFLIRT (Jenkinson et al., 2002),

- 205 non-brain removal using BET (Smith, 2002), spatial smoothing using a Gaussian
- 206 kernel of FWHM 5 mm, grand-mean intensity normalization of the entire 4D dataset

207	by a single multiplicative factor, and high-pass temporal filtering. Registration from
208	functional images to high-resolution structures was carried out using FLIRT
209	(Jenkinson and Smith, 2001; Jenkinson et al., 2002). Registration from a
210	high-resolution structure to a standard space was further refined using FNIRT
211	nonlinear registration (Andersson et al., 2007a, 2007b). Each session of fMRI data
212	was modeled on a voxel-by-voxel basis using a general linear model (GLM) approach
213	(Woolrich et al., 2001), and parameter estimates (PE) were estimated for nostalgia or
214	control cue stages, followed by low/high pain stimuli. A second-level analysis of the
215	fixed-effects model was performed on within-subject activation across the three
216	sessions. Finally, the group level analysis was carried out using a mixed-effects
217	approach (FLAME, FMRIB's Local Analysis of Mixed Effects; Beckmann et al.,
218	2003; Woolrich et al., 2004; Woolrich, 2008), and Z (Gaussianised T/F) statistic
219	images were thresholded using clusters determined by $Z > 2.3$ and a corrected cluster
220	significance threshold of $p = 0.05$ (Worsley, 2001). A repeated measure analysis of
221	variance (Schestatsky et al., 2008) and the independent sample <i>t</i> -test was performed
222	across subjects to investigate the brain regions involved in the variability of responses
223	at low or high pain intensities under the nostalgia or control condition (i.e., four
224	combined conditions: nostalgia-low, control-low, nostalgia-high, and control-high).
225	Brain regions with significantly contrasting activation differences (control >
226	nostalgia) in the pain stage were flagged for a region of interest analysis (Cozzolino et
227	al., 2019). Masks of ROIs were created in FSLeves (part of FSL tools,

228	https://fsl.fmrib.ox.ac.uk/fsl/fsleyes/) and further thresholded using Harvard-Oxford
229	cortical and subcortical atlases. The average PE values within ROIs (including the
230	lingual gyrus and parahippocampal gyrus) were extracted from the four conditions for
231	further analysis.
232	To explore the mechanism of nostalgia-induced analgesia, a general linear
233	model was used with the nostalgic strength (i.e., the nostalgic rating of figures) and
234	the analgesic effect (i.e., the difference in the pain rating in the control condition
235	compared to the nostalgia condition in the pain stage) as regressors of interest to
236	determine the nostalgia and pain encoding brain activation across the whole brain.
237	Statistical images for encoding activation were thresholded using a cluster-forming
238	correction determined by $Z\!>\!2.3$ and a corrected cluster significance threshold of $p<$
239	0.05.
240	Finally, brain regions that were significantly correlated to nostalgic strength
241	were further taken to the ROI masks (the prefrontal thalamus) for further
242	psychophysiological interaction analysis in the cue stage. We first extracted the mean
243	timecourse from the prefrontal thalamus seed region using preprocessed functional
244	data. Next, the timecourse was added to the GLM at the individual level as the
245	physiological regressor, with the original task regressors as the psychological
246	regressors. The final interaction regressor is the scalar product of the psychological and
247	physiological regressors. Individual parameter estimates for PPI were then taken to the

248 normal higher-level group comparison (PPI analysis in Feat,

249 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PPIHowToRun). We also performed further PPI 250 analyses during the pain stage. The PAG (adopted from Harvard-Oxford cortical and 251 subcortical atlases) was used for seed voxel identification because it correlated with 252 nostalgic strength in the cue stage, which allowed us to test whether there was 253 functional connectivity that was associated with the pain ratings. 254 Results 255 **Behavioral results** 256 *Post-experiment manipulation check.* As intended, the independent sample 257 t-tests revealed that participants felt more nostalgia towards the nostalgic pictures 258 (mean \pm SD, 4.32 \pm 0.34) than towards the control pictures (2.26 \pm 0.62, $t_{(66)} = 16.92$, 259 p < 0.001, d = 4.12, indicating that the manipulation worked. Also, participants felt 260 more pleasant towards the nostalgic pictures (3.96 ± 0.37) than towards the control 261 pictures (3.45 \pm 0.28, $t_{(66)}$ = 6.35, p < 0.001, d = 1.55; Figure 1B), suggesting that 262 nostalgia was overall a positive emotion. A regression analysis with experimental conditions and pleasantness as predictors ($R^2 = 0.912$) also showed that aroused 263 264 pleasantness was positively associated with aroused nostalgia ($\beta = 0.478$, p = 0.010). 265 *Effect of nostalgia on pain ratings.* Pain ratings were analyzed by two-way 266 repeated analyses of variance (ANOVAs) with condition and intensity as two 267 within-participant variables. The main effect of nostalgia condition in the pain stage 268 was significant, $F_{(1.33)} = 10.71$, p = 0.003, $\eta_p^2 = 0.245$, indicating that, as demonstrated 269 in a previous study (Kersten et al., 2020), nostalgia significantly reduced pain ratings.

270	The main effect of pain intensity was also significant, $F_{(1,33)} = 227.53$, $p < 0.001$, $\eta_p^2 =$
271	0.873, suggesting that stronger pain stimuli led to a stronger pain rating. The
272	interaction between condition and intensity was significant, $F_{(1,33)} = 14.10$, $p = 0.001$,
273	$\eta_p^2 = 0.299$. Post-hoc analysis showed that the pain rating in the nostalgia condition
274	(3.82 ± 1.21) was significantly lower than that in the control condition (4.16 ± 1.12) at
275	the low pain intensity level, $t_{(33)} = -4.42$, $p < 0.001$, $d = 0.29$ (Figure 1C); however,
276	that there was no significant difference between these two conditions at the high pain
277	intensity level (7.62 ± 1.36 vs. 7.62 ± 1.35, $t_{(33)} \approx 0$, $p = 0.998$).
278	Correlation between nostalgic and analgesic effects. We calculated an index
279	of relative nostalgic strength (i.e., the nostalgic effect, the nostalgic ratings of the
280	nostalgic pictures minus those of the control ones), with a larger number suggesting a
281	stronger nostalgic effect. We also calculated an index of the analgesic effect by
282	subtracting the pain rating in the control condition from that in the paired nostalgia
283	condition in the pain stage, with a larger number denoting a stronger analgesic effect.
284	We then examined the correlation between nostalgic and analgesic effects. The results
285	revealed a positive correlation (Figure 1D; $r = 0.348$, $p = 0.044$, $p_{(corr_fdr)} = 0.0873$;
286	corrected for multiple comparisons based on the more stringent false discovery rate
287	proposed by Fachada and Rosa, 2018), suggesting that stronger nostalgia was
288	associated with a large analgesic effect; that is, the more nostalgic the participants felt,
289	the less pain they perceived. As for the pleasantness effect (i.e., the relative
290	pleasantness strength, the pleasantness ratings of the nostalgic pictures minus those of

291

292	effect ($r = 0.002$, $p = 0.993$). This suggests that the analgesic effect should be elicited
293	by nostalgia rather than from the pleasantness induced by the pictures.
294	fMRI results
295	Whole-brain ANOVA analysis. Consistent with the results of the previous
296	studies, the classic pain-related regions (i.e., the SI, SII, insular) evoked by the
297	thermal noxious stimuli were observed in every single condition (i.e.,
298	nostalgia/control, low/high pain levels, Figure 2). In the cue stage, the analysis of the
299	fMRI results revealed nostalgia-specific activation in the lateral occipital cortex ([50,
300	-66, 4], [-52, -68, 12]), the left supramarginal gyrus ([-64, -34, 42]), and the right
301	frontal orbital cortex ([26, 32, -10]) in the nostalgia condition compared to the control
302	condition (Figure 3A). Brain activation of supramarginal gyrus (nostalgia > control)
303	was marginally positively correlated with the analgesic effect (control > nostalgia; $r =$
304	0.301, $p = 0.084$, Figure 3D). We also checked the deactivation in the nostalgia
305	condition in contrast to the control condition. We found only two deactivated regions,
306	the cingulate gyrus ($[0, -22, 36]$) and angular gyrus ($[-50, -54, 36]$).
307	In the pain stage, the bilateral SI ([-46, -24, 46], [48, -18, 46]), SII ([-54, -30
308	20], [54, -24, 20]), thalamus ([-16, -30, 8], [14, -18, 10]), insular ([-42, -2, -2], [38,
309	-2, -2]), lingual gyrus ([-22, -56, 2], [18, -56, 6]), and parahippocampal gyrus ([-12,
310	-42, -8], [18, -42, -8]) were increased in the high-intensity condition than in the

the control ones), we found that it was not significantly correlated with the analgesic

311 low-intensity condition (Figure 3B). The increased activation (high > low) was

312	positively correlated with increased pain ratings (high > low; $r_{SI} = 0.381$, $p = 0.026$,
313	$p_{(corr_fdr)} = 0.0522; r_{SII} = 0.421, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.013, p_{(corr_fdr)} = 0.0265; r_{thalamus} = 0.509, p = 0.013, p_{(corr_fdr)} = 0.0013, p_{(corr_fdr)$
314	0.002, $p_{(corr_fdr)} = 0.0042$; $r_{insular} = 0.449$, $p = 0.008$, $p_{(corr_fdr)} = 0.0154$; $r_{lingual gyrus} = 0.0042$; $r_{insular} = 0.0042$
315	0.401, $p = 0.019$, $p_{(corr_fdr)} = 0.0376$), except for the parahippocampal gyrus
316	($r_{\text{parahippocampal gyrus}} = 0.257$, $p = 0.142$), implying that the stronger the thermal stimulus,
317	the stronger the activation of the pain-related brain area. Importantly, greater
318	activation was visible in the bilateral lingual gyrus ([-18, -52, 2], [18, -56, 6]) and
319	the right parahippocampal gyrus ($[18, -42, -8]$) in the control condition than in the
320	nostalgia condition (Figure 3C).
321	ROI analysis. We examined the relationship between nostalgic strength and
322	activation in pain-related neural regions. Based on the results of the whole-brain
323	analyses, we focused on the ROIs in the lingual and parahippocampal gyri. As
324	expected, participants showed decreased activation in the lingual gyrus and
325	parahippocampal gyrus in the nostalgia condition compared to the control condition in
326	the pain stage ($t_{(66)} = -4.17$, $p < 0.001$, $d = 0.47$, Figure 3E; $t_{(66)} = -3.98$, $p < 0.001$, d
327	= 0.44, Figure 3F). We then examined the correlations between pain ratings and brain
328	activation at each of the four pain conditions (i.e., nostalgia-high, nostalgia-low,
329	control-high, and control-low). For the lingual gyrus, pain ratings were positively
330	correlated with brain activity in the nostalgia-low and nostalgia-high conditions ($r =$
331	0.339, $p = 0.050$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.361$, $p = 0.036$, $p_{(corr_fdr)} = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.0361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.0361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0992$, Figure 3G; $r = 0.0361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0361$, $p = 0.036$, $p_{(corr_fdr)} = 0.0361$, $p_{(co$
າງງ	0.0723 Figure 3H) but not in the control-low and control-high conditions $(r = 0.230)$

333	p = 0.192; $r = 0.326$, $p = 0.060$), suggesting that nostalgia played a key role in
334	pain-related activation in the lingual gyrus, regardless of the intensity of the pain
335	stimuli. For the parahippocampal gyrus, no significant correlations were found ($r =$
336	0.318, p = 0.067; r = 0.212, p = 0.228; r = 0.109, p = 0.540), except in the
337	control-high condition ($r = 0.397$, $p = 0.02$, $p_{(corr_fdr)} = 0.04$).
338	Nostalgia and pain encoding activities. Nostalgic strength was positively
339	correlated with brain activity in the prefrontal thalamus $([-1, -14, -2])$ in the nostalgia
340	stage ($r = 0.537$, $p = 0.001$, $p_{(corr_fdr)} = 0.0021$, left part in Figure 4); in addition,
341	analgesic effects were positively correlated with brain activity in the posterior parietal
342	thalamus ([24, -29, 14]) during the pain stage ($r = 0.601$, $p < 0.001$, $p_{(corr_fdr)} < 0.001$,
343	right part of Figure 4). These findings suggest that nostalgia could affect thalamic
344	activity not only during the nostalgia stage but also during the pain stage. Moreover,
345	brain activity in the thalamus in the nostalgia $([-1, -14, -2])$ and pain stages $([24, -29, -29])$
346	14]) were positively correlated with each other ($r = 0.449$, $p = 0.008$, $p_{(corr_fdr)} =$
347	0.0155, middle part in Figure 4).
348	These findings suggest that the thalamus might play a key role in the nostalgia
349	and pain information encoding process in the possible brain circuit for
350	nostalgia-induced analgesia, which we tested using mediation analysis. Overall, the
351	model with brain activation (in the posterior parietal thalamus) in the pain stage as the
352	mediator was significant ($R^2 = 0.36$, $MSE = 0.07$, $F_{(2,31)} = 8.85$, $p = 0.0009$). The
353	indirect effect via activation in the pain stage was significant ($b = 0.30$, $SE = 0.16$,

354	95%CI = [0.06, 0.66]; Figure 5), thus confirming our expectation that activity in the
355	thalamus plays a regulatory role in generating an analgesic effect.
356	PPI analysis. Whole-brain PPI analysis revealed strong functional
357	connectivity between the thalamus (seed region) and PAG ($[-4, -27, -3]$), as well as
358	with several other regions, including the putamen $([-32, -15, -8])$, amygdala $([24, -15, -8])$
359	17, -16]), and hippocampus ([16, -27 , -8], Figure 6A) during the nostalgia stage.
360	Notably, thalamus-PAG connectivity was positively correlated with nostalgic strength
361	in the cue stage ($r = 0.335$, $p = 0.053$, $p_{(corr_fdr)} = 0.1051$, Figure 6B), which indicates
362	that the greater the nostalgic strength, the stronger the connection between the
363	thalamus and the PAG. Another whole-brain PPI analysis with the PAG as the seed
364	was conducted with regard to the pain stage. It revealed significant functional
365	connectivity between the PAG and dIPFC ([28, 40, 44]), as well as with the frontal
366	pole ([19, 47, 44], Figure 6C) in the nostalgia condition. In contrast, no significant
367	functional connectivity was observed in the control condition. Meanwhile,
368	PAG-dlPFC connectivity was marginally positively correlated with the pain rating in
369	the nostalgia-low condition ($r = 0.306$, $p = 0.079$, Figure 6D), reflecting a modulation
370	associated with the pain rating of low-intensity noxious stimuli.
371	Discussion
372	In this study, we examined the neural mechanisms underlying the analgesic
373	effect of nostalgia. Similar to the findings of previous behavioral studies (Zhou et al.,

374 2012; Kersten et al., 2020), we observed a direct analgesic effect of nostalgia on pain,

375	particularly for low-intensity pain. Further, based on behavioral evidence, we found		
376	that nostalgia significantly attenuated brain responses to thermal pain in the lingual		
377	gyrus and parahippocampal gyrus in comparison to the control condition. Most		
378	importantly, the thalamocortical system was proven to play a vital role in analgesia.		
379	First, the thalamus was highly engaged in both nostalgia and pain encoding processes.		
380	Second, thalamic activity in the pain stage was shown to mediate the effect of		
381	nostalgic strength on pain. Third, nostalgic strength was highly associated with		
382	thalamus-PAG connectivity in the cue stage, and PAG-dlPFC coupling predicted pain		
383	perception in the following pain stage, both of which are important pathways in		
384	analgesia modulation. Overall, we demonstrated the analgesic effect of nostalgia and		
385	elucidated its neural mechanism.		
386	Nostalgia-induced analgesic effects		
387	As a positive emotion, nostalgia can help maintain positive psychological		
388	status and counteract negative situations (Wildschut et al., 2006), such as painful		
389	experiences (Zhou et al., 2012). Notably, the current study found that, after being		
390	shown nostalgic stimuli (vs. non-nostalgia or control stimuli), participants reported		
391	significantly weaker pain, which was not the case for those shown non-nostalgic		
392	stimuli. We also found that the analgesic effect was positively correlated with the		
393	nostalgic effect (Figure 1D).		
394	Nostalgia-induced analgesic effects were confirmed in our experiment;		
395	however, this effect was only significant for relatively weak noxious stimuli. A		

possible reason for this is that the effect of nostalgic cues could last longer when the
pain intensity is low. Another possible reason may be that severe pain itself occupies
more cognitive resources and therefore weakens the effect of nostalgia cues (Levine
et al., 1979). These results suggest that nostalgia would be more effective for mild
clinical pain.

401 Brain activation involved in nostalgia

402 Our study found nostalgia-specific activation in the lateral occipital cortex,

403 supramarginal gyrus, and frontal orbital cortex. These regions are all involved in retro

404 scene processing (Yücel et al., 2020), the sensation of the self (Tsakiris et al., 2007),

405 and emotional appraisal (Rolls, 2004; Sotres-Bayon et al., 2006). Compared to the

406 effect of recalling a nostalgic experience, observing nostalgic stimuli, as was done in

407 the current study, might not be strong enough to arouse activity in the reward-related

408 regions of the brain (Barrett and Janata, 2016; Oba et al., 2016). However, the

409 self-related and emotion-related regions are evoked by the stimuli, which also play an

410 important role in nostalgia processing (Tsakiris et al., 2007; Apaolaza-Ibantilde et al.,

411 2010).

412 Brain activation involved in pain under nostalgic effects

Interestingly, brain activation of the left lingual gyrus and parahippocampal
gyrus decreased significantly in the nostalgia condition, showing a common
modulation effect induced by nostalgia. As discussed above, nostalgic cues tend to
elicit a positive psychological status despite perceiving noxious stimuli (Kersten et al.,

417	2020). Meanwhile, the lingual gyrus is associated with the emotional regulation of
418	autobiographical memories (Kross et al., 2009; Rubin-Falcone et al., 2018). After
419	participants perceived the positive nostalgic information, the inhibited brain activation
420	evoked by thermal stimulus reflected both self- and emotion-related modulation.
421	In this study, we did not find a significant discrepancy in other classic
422	pain-related regions (e.g., the insular) in the nostalgia condition compared to the
423	control condition using the ANOVA analysis within the routine general linear model.
424	The nostalgia-/pain- specific activated regions in the initial whole-brain GLM
425	analysis were not the same as those found in the nostalgia/pain encoding activities.
426	This suggests that nostalgia perception/encoding, pain perception/encoding, and
427	analgesia regulation might implicate different pathways or mechanisms. Our study
428	was more concerned about how nostalgia may produce analgesic effects by
429	modulating the pain perception encoding process. As a result, we mainly focused on
430	the role of the thalamus in examining how the underlying nostalgia-induced analgesia
431	functions, which will be discussed below.
432	Thalamocortical mechanisms involved in nostalgia and analgesia encoding
433	In our study, the thalamus was associated with both nostalgia and analgesia
434	encoding. The thalamus is an important brain region for information transmission,
435	integration, and pain modulation (Ploner et al., 2010). Specifically, the
436	nostalgia-encoding region within the prefrontal thalamus is the thalamic subregion
437	connected to the prefrontal lobe (Garibotto et al., 2020; Culbreth et al., 2021), which

438	is known to be critical for higher cognitive functions (Mitchell, 2015). In contrast,
439	analgesia encoding within the posterior parietal thalamus involves the thalamic
440	subregion connected to the posterior parietal lobe (Liu et al., 2019; Garibotto et al.,
441	2020), contributing to multisensory and sensory-motor integration (Gilissen et al.,
442	2021). More importantly, brain activity in the prefrontal and posterior parietal
443	thalamus, which separately encode nostalgia and analgesia, were significantly
444	positively correlated in the current study. Additionally, mediation analysis found that
445	nostalgia may attenuate pain by strengthening the activity of the thalamus during the
446	pain stage (Figure 5). The thalamus integrates the information generated by the
447	nostalgic state (Krause et al., 2019), implying a thalamus-based central functional
448	linkage in the nostalgia-induced analgesic process.
449	In addition to the mediating role of the thalamus, we also found that
450	thalamus-PAG connectivity was positively correlated with nostalgic strength, and that
451	PAG-dlPFC connectivity was salient in response to nostalgic stimuli and correlated
452	with pain ratings in the nostalgic-low condition. It is well understood that the PAG
453	plays a crucial role in the descending pain inhibition system (Dougherty et al., 2008;
454	Grahl et al., 2018) and is associated with analgesia (Yilmaz et al., 2010). A previous
455	study has shown that thalamus-PAG connectivity predicts a greater analgesic effect
456	after sham and real tDCS (Cummiford et al., 2016). It is possible that these effects of
457	pre-stimulus connectivity related to nostalgia between the thalamus and PAG might
458	remain active for subsequent noxious stimuli.

459	It has also been reported that PAG-dlPFC functional connectivity is associated
460	with a placebo analgesic response (Wager et al., 2004). Our results also showed that
461	PAG-dlPFC functional connectivity was related to pain ratings in the nostalgia-low
462	condition. The dIPFC is engaged in cognitive-affective processing of pain, and it has
463	been suggested that it exerts an active control on pain perception by top-down
464	modulation (Weizman et al., 2018; Mao et al., 2020). In consideration of this, we
465	interpret the current study results as indicating that nostalgic analgesia was more
466	effective at the low-intensity level, which had been observed in behavioral
467	performance.
468	Based on our findings, we propose a possible model of thalamus-centered
469	pathways to explain the analgesic effect of nostalgia (Figure 7). The thalamus
470	modulates nociceptive inputs and plays a crucial role in triggering the brain-stem
471	analgesic pathway. We speculate that the thalamus integrates information under the
472	effect of nostalgia and transmits downstream signals to the PAG. The PAG then
473	transmits the regulatory signal back to the dlPFC to attenuate nociceptive processing,
474	suggesting that nostalgic analgesia operates through the thalamus-PAG-dlPFC
475	pathways.
476	The key independent variable we focused on in the current study, nostalgia, is
477	a complicated emotion (Hepper et al., 2014). To balance individual differences
478	between subjects, we adopted a within-participant design to explore the analgesic
479	effect of nostalgia. However, it is possible that participants could be distracted by the

480	control images in the subsequent trial if they continued to feel the effects of their
481	nostalgic immersion status induced by the images they saw in the earlier trial. In this
482	case, however, the nostalgic effect would have shrunk visibly, although it is
483	noteworthy that we did observe a tangible impact of nostalgia on pain relief. Similarly,
484	using a between-participant design and much stronger nostalgic materials would be
485	better used in future studies to achieve a stronger and more stable nostalgic status and
486	to examine the best strategies to operationalize psychological analgesia. Another
487	limitation is that we only examined participants within a limited age range. It is
488	essential to investigate whether the analgesic effect changes with age to consider its
489	potential clinical applications. The single-age group sample was insufficient, and
490	repeated studies across generations would be helpful.
491	In conclusion, the current study results reveal that the thalamus, as a critical
492	brain region for pain modulation, is also related to the analgesic effect associated with
493	nostalgia. Meanwhile, thalamus-PAG connectivity in the cue stage and PAG-dlPFC
494	connectivity in the pain stage also suggest potential analgesic pathways. These
495	findings offer implications and perspectives for the further development and
496	improvement of non-drug, psychological analgesia.
497	References
498	Andersson J, Jenkinson M, Smith S (2007a) Non-linear optimization. FMRIB Techn.
499	Rep. TR07JA1.

500 Andersson JL, Jenkinson M, Smith S (2007b) Non-linear registration aka spatial

- 502 Apaolaza-Ibantilde V, MarkZ, Hartmann P (2010) Memory, emotions and rock n roll:
- 503 The influence of music in advertising, on brand and endorser perception. Afr J
 504 Bus Manag 4:3805–3816.
- 505 Barrett FS, Grimm KJ, Robins RW, Wildschut T, Sedikides C, Janata P (2010)
 506 Music-evoked nostalgia: Affect, memory, and personality. Emotion 10:390–
 507 403.
- 508 Barrett FS, Janata P (2016) Neural responses to nostalgia-evoking music modeled by
 509 elements of dynamic musical structure and individual differences in affective
 510 traits. Neuropsychologia 91:234–246.
- 511 Becker S, Gandhi W, Elfassy NM, Schweinhardt P (2013) The role of dopamine in the
- 512 perceptual modulation of nociceptive stimuli by monetary wins or losses. Eur
 513 J Neurosci 38:3080–3088.
- 514 Beckmann CF, Jenkinson M, Smith SM (2003) General multilevel linear modeling for
 515 group analysis in FMRI. Neuroimage 20:1052–1063.
- 516 Chen KY, Chen L, Mao J (2014) Buprenorphine-naloxone therapy in pain
 517 management. Anesthesiology 120:1262–1274.
- 518 Coutaux A (2017) Non-pharmacological treatments for pain relief: TENS and519 acupuncture. Joint Bone Spine 84:657–661.
- 520 Cozzolino M, Coccia ME, Lazzeri G, Basile F, Troiano G (2019) Variables Associated
- 521 with Endometriosis-related Pain: A Pilot Study using a Visual Analogue Scale.

- 522 Rev Bras Ginecol Obstet 41:170–175.
- 523 Culbreth AJ, Wu Q, Chen S, Adhikari BM, Hong LE, Gold JM, Waltz JA (2021)
- 524 Temporal-thalamic and cingulo-opercular connectivity in people with525 schizophrenia. Neuroimage: Clin 29:102531.
- 526 Cummiford CM. Nascimento TD, Foerster BR, Clauw DJ, Zubieta JK, Harris RE,
- 527 DaSilva AF (2016) Changes in resting state functional connectivity after
 528 repetitive transcranial direct current stimulation applied to motor cortex in
 529 fibromyalgia patients. Arthritis Res Ther 18:40.
- 530 Dellapina E, Gerdelat-Mas A, Ory-Magne F, Pourcel L, Galitzky M, Calvas F,
- Simonetta-Moreau M, Thalamas C, Payoux P, Brefel-Courbon C (2011)
 Apomorphine effect on pain threshold in Parkinson's disease: a clinical and
 positron emission tomography study. Mov Disord 26:153–157.
- 534 Dougherty DD, Kong J, Webb M, Bonab AA, Fischman AJ, Gollub RL (2008) A
 535 combined [11C] diprenorphine PET study and fMRI study of acupuncture
 536 analgesia. Behav Brain Res 193:63–68.
- 537 Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R, Lorenz J, Büchel C (2009)
- 538 Activation of the Opioidergic Descending Pain Control System Underlies
 539 Placebo Analgesia. Neuron 64:533–543.
- Fachada N, Rosa AC (2018) micompm: A MATLAB/Octave toolbox for multivariate
 independent comparison of observations. J Open Source Softw 3:430.
- 542 Garibotto V, Wissmeyer M, Giavri Z, Ratib O, Picard F (2020) Nicotinic

	543	Acetylcholine Receptor Density in the "Higher-Order" Thalamus Projecting to
	544	the Prefrontal Cortex in Humans: a PET Study. Mol Imaging Biol 22:417-424.
÷	545	Gilissen SRJ, Farrow K, Bonin V, Arckens L (2021) Reconsidering the Border
i.	546	between the Visual and Posterior Parietal Cortex of Mice. Cereb Cortex
5	547	31:1675–1692.
<u>л</u>	548	Grahl A, Onat S, Büchel C (2018) The periaqueductal gray and Bayesian integration
	549	in placebo analgesia. Elife 7:e32930.
1a	550	Hein G, Engelmann JB, Tobler PN (2018) Pain relief provided by an outgroup
2	551	member enhances analgesia. Proc Biol Sci 285:1471–2954.
b Q	552	Hepper EG, Wildschut T, Sedikides C, Ritchie TD, Yung Y-F, Hansen N, Abakoumkin
ot€	553	G, Arikan G, Cisek SZ, Demassosso DB, Demassosso DB (2014) Pancultural
Ð	554	nostalgia: Prototypical conceptions across cultures. Emotion 14:733-747.
O	555	Hu L, Cai MM, Xiao P, Luo F, Iannetti GD (2014) Human brain responses to
A	556	concomitant stimulation of Aδ and C nociceptors. J Neurosci 34:11439-
	557	11451.
SC	558	Hu L, Iannetti GD (2019) Neural indicators of perceptual variability of pain across
5	559	species. Proc Natl Acad Sci U S A 11:1782–1791.
D C	560	Hussain SA, Alhabash S (2020) Effect of nostalgia as a motivational force for
	561	depressed students to seek professional psychological help. J Am Coll Health
	562	1–9.

563 Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the

- robust and accurate linear registration and motion correction of brain images.Neuroimage 17:825–841.
- Jenkinson M, Smith S (2001) A global optimisation method for robust affine
 registration of brain images. Med Image Anal 5:143–156.
- 568 Kanarek RB, Carrington C (2004) Sucrose consumption enhances the analgesic
 569 effects of cigarette smoking in male and female smokers.
 570 Psychopharmacology 173:57–63.
- 571 Kersten M, Swets JA, Cox CR, Kusumi T, Nishihata K, Watanabe T (2020)
 572 Attenuating Pain With the Past: Nostalgia Reduces Physical Pain. Front Psych
 573 11:2722.
- 574 Krause AJ, Prather AA, Wager TD, Lindquist MA, Walker MP (2019) The pain of
 575 sleep loss: a brain characterization in humans. J Neurosci 39:2291–2300.
- 576 Kross E, Davidson M, Weber J, Ochsner K (2009) Coping with emotions past: the
 577 neural bases of regulating affect associated with negative autobiographical
 578 memories. Biol Psychiatry 65:361–366.
- 579 Levine J, Gordon N, Bornstein J, Fields H (1979) Role of pain in placebo analgesia.
 580 Proc Natl Acad Sci U S A 76:3528–3531.
- 581 Liu P, Wei Y, Liao H, Fan Y, Li R, Feng N, Duan G, Deng D, Qin W (2019)
- 582 Thalamocortical dysconnectivity in premenstrual syndrome. Brain Imaging583 Behav 13:717–724.
- 584 Mao CP, Chen FR, Huo JH, Zhang L, Zhang GR, Zhang B, Zhou XQ (2020) Altered

- resting-state functional connectivity and effective connectivity of the habenula
 in irritable bowel syndrome: A cross-sectional and machine learning study.
 Hum Brain Mapp 41:3655–3666.
- 588 Mercer ME, Holder MD (1997) Antinociceptive effects of palatable sweet ingesta on
 589 human responsivity to pressure pain. Physiol Behav 61:311–318.
- 590 Mitchell AS (2015) The mediodorsal thalamus as a higher order thalamic relay
 591 nucleus important for learning and decision-making. Neurosci Biobehav Rev
 592 54:76–88.
- 593 Oba K, Noriuchi M, Atomi T, Moriguchi Y, Kikuchi Y (2016) Memory and reward
 594 systems coproduce 'nostalgic'experiences in the brain. Soc Cog Affect
 595 Neurosci 11:1069–1077.
- 596 Oertel B, Preibisch C, Wallenhorst T, Hummel T, Geisslinger G, Lanfermann H,
 597 Lötsch J (2008) Differential opioid action on sensory and affective cerebral
 598 pain processing. Clin Pharma Therap 83:577–588.
- 599 Oliva V, Gregory R, Davies WE, Harrison L, Moran R, Pickering AE, Brooks JCW
- 600 (2020) Parallel cortical-brainstem pathways to attentional analgesia.
 601 Neuroimage 226:117548.
- 602 Panksepp J (2003). Feeling the pain of social loss. Science 302:237–239.
- 603 Ploner M, Lee MC, Wiech K, Bingel U, Tracey I (2010) Prestimulus functional
- 604 connectivity determines pain perception in humans. Proc Natl Acad Sci U S A
 605 107:355–360.

- 606 Qin ZX, Su JJ, He XW, Zhu Q, Cui YY, Zhang JL, Wang MX, Gao TT, Tang W, Hu Y,
- Liu YS, Qiao Y, Liu JR, Li JQ, Du XX (2020) Altered resting-state functional
 connectivity between subregions in the thalamus and cortex in migraine
 without aura. Eur J Neurol 27:2233–2241.
- 610 Quan X, Fong DYT, Leung AYM, Liao Q, Ruscheweyh R, Chau PH (2018)
 611 Validation of the Mandarin Chinese version of the pain sensitivity
 612 questionnaire. Pain Pract 18:180–193.
- 613 Rolls ET (2004) The functions of the orbitofrontal cortex. Brain Cog 55:11–29.
- 614 Routledge C, Arndt J, Sedikides C, Wildschut T (2008) A blast from the past: The

615 terror management function of nostalgia. J Exp Soc Psychol 44:132–140.

- 616 Roy M, Piché M, Chen JI, Peretz I, Rainville P (2009) Cerebral and spinal modulation
 617 of pain by emotions. Proc Natl Acad Sci U S A 106:20900–20905.
- 618 Rubin-Falcone H, Weber J, Kishon R, Ochsner K, Delaparte L, Doré B, Zanderigo F,
- 619 Oquendo MA, Mann JJ, Miller JM (2018) Longitudinal effects of cognitive
 620 behavioral therapy for depression on the neural correlates of emotion
 621 regulation. Psychiatry Research: Neuroimaging 271:82–90.
- 622 Ruscheweyh R, Marziniak M, Stumpenhorst F, Reinholz J, Knecht S (2009) Pain
- sensitivity can be assessed by self-rating: development and validation of thePain Sensitivity Questionnaire. Pain 146:65–74.
- 625 Schestatsky P, Lladó-Carbó E, Casanova-Molla J, Álvarez-Blanco S, Valls-Solé J
 626 (2008) Small fibre function in patients with meralgia paresthetica. Pain

628 Schwarz KA, Pfister R, Büchel C (2016) Rethinking Explicit Expectations: 629 Connecting Placebos, Social Cognition, and Contextual Perception. Trends 630 Cogn Sci 20:469–480.

- 631 Sedikides C, Wildschut T (2016) Nostalgia: A bittersweet emotion that confers
 632 psychological health benefits. In: The Wiley handbook of positive clinical
 633 psychology (Johnson J, Wood A, eds), pp25–136. Hoboken NJ: Wiley
- 634 Sedikides C, Wildschut T, Routledge C, Arndt J, Hepper EG, Zhou X (2015) To
 635 nostalgize: Mixing memory with affect and desire. Adv Exp Soc Psychol
 636 51:189–273.
- 637 Shih HC, Yang JW, Lee CM, Shyu BC (2019) Spontaneous cingulate high-current
 638 spikes signal normal and pathological pain states. J Neurosci 39:5128–5142.
- 639 Shimo K, Ueno T, Younger J, Nishihara M, Inoue S, Ikemoto T, Taniguchi S, Ushida
 640 T (2011) Visualization of painful experiences believed to trigger the activation
 641 of affective and emotional brain regions in subjects with low back pain. PloS
 642 One 6:e26681.
- 643 Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–
 644 155.
- 645 Sotres-Bayon F, Cain CK, LeDoux JE (2006) Brain mechanisms of fear extinction:
 646 historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry
 647 60:329–336.

- 648 Sugimori E, Shimokawa K, Aoyama Y, Kita T, Kusumi T (2020) Empathetic listening
 649 boosts nostalgia levels and positive emotions in autobiographical
 650 narrators. Heliyon 6:e04536.
- 651 Tabry V, Vogel T, Lussier M, Brouillard P, Buhle J, Rainville P, Bherer L, Roy M
- 652 (2020) Inter-individual predictors of pain inhibition during performance of a653 competing cognitive task. Scientific Rep 10:1–14.
- Tsakiris M, Hesse MD, Boy C, Haggard P, Fink GR (2007) Neural signatures of body
 ownership: a sensory network for bodily self-consciousness. Cereb Cortex
 17:2235–2244.
- 657 Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM,
- Rose RM, Cohen JD (2004) Placebo-induced changes in FMRI in theanticipation and experience of pain. Science 303:1162–1167.
- Weizman L, Dayan L, Brill S, Nahman-Averbuch H, Hendler T, Jacob G, Sharon H
 (2018) Cannabis analgesia in chronic neuropathic pain is associated with
 altered brain connectivity. Neurology 91:e1285–e1294.
- 663 Wildschut T, Sedikides C, Arndt J, Routledge C (2006) Nostalgia: content, triggers,
 664 functions. J Pers Soc Psychol 91:975–993.
- 665 Woolrich M (2008) Robust group analysis using outlier inference. Neuroimage666 41:286–301.
- 667 Woolrich MW, Behrens TE, Beckmann CF, Jenkinson M, Smith SM (2004)668 Multilevel linear modelling for FMRI group analysis using Bayesian inference.

- 669 Neuroimage 21:1732–1747.
- 670 Woolrich MW, Ripley BD, Brady M, Smith SM (2001) Temporal autocorrelation in
- 671 univariate linear modeling of FMRI data. Neuroimage 14:1370–1386.
- 672 Worsley KJ (2001) Statistical analysis of activation images. Functional MRI: An673 introduction to methods 14:251–70.
- 674 Yang Z, Sedikides C, Izuma K, Wildschut T, Kashima ES, Luo YL, Chen J, Cai H
- 675 (2021) Nostalgia enhances detection of death threat: neural and behavioral676 evidence. Sci Rep 11:1–8.
- 677 Yen C-T, Lu P-L (2013) Thalamus and pain. Acta Anaesthesiologica Taiwanica678 51:73–80.
- 679 Yilmaz P, Diers M, Diener S, Rance M, Wessa M, Flor H (2010) Brain correlates of
 680 stress-induced analgesia. Pain 151:522–529.
- 681 Yücel N, Yücel A, Gür YE, Gündüz K (2020) Examining retro marketing mads from
 682 the perspective of neuromarketing: The example of Nestle brand. Erciyes
 683 Üniversitesi Iktisadi ve Idari Bilimler Faküeltesi Dergisi 55:77–90.
- 684 Zaki J, Ochsner KN, Hanelin J, Wager TD, Mackey SC (2007) Different circuits for
- different pain: patterns of functional connectivity reveal distinct networks forprocessing pain in self and others. Soc Neurosci 2:276–291.
- 687 Zeidan F, Vago DR (2016) Mindfulness meditation-based pain relief: a mechanistic
 688 account. Ann N Y Acad Sci 1373:114–127
- 689 Zhang M, Zhang Y, Mu Y, Wei Z, Kong Y (2021) Gender discrimination facilitates

690	fMRI responses and connectivity to thermal pain. Neuroimage 244:118644.
691	Zhou X, Wildschut T, Sedikides C, Chen X, Vingerhoets AJ (2012) Heartwarming
692	memories: Nostalgia maintains physiological comfort. Emotion 12:678–684.

5

694	Figure 1. (A) The setup for each trial. In the current trial, participants viewed a nostalgic cue (i.e., a
695	bicycle from childhood), while in the control trial, participants viewed a control cue (i.e., a bicycle
696	from contemporary life). (B) Manipulation check performed using a five-point Likert scale (Error bars
697	represent standard deviation, *** $p < 0.001$). (C) Mean of pain ratings in the four conditions (** $p < 0.001$).
698	0.01). (D) Correlation between the nostalgic effect and analgesic effect.
699	
700	Figure 2. Pain-related activation in four conditions.
701	
702	Figure 3. (A) During the cue stage, brain activation of the lateral occipital cortex, the left
703	supramarginal gyrus, and the right frontal orbital cortex was significantly increased in the nostalgia
704	condition compared to the control condition. (B) During the pain stage, brain activation of the thalamus,
705	insular, lingual gyrus, and parahippocampal gyrus was significantly increased in the high-intensity
706	condition compared to the low-intensity condition. (C) Brain activation of the lingual gyrus and
707	parahippocampal gyrus was significantly greater in the control condition compared to the nostalgia
708	condition in the pain stage. (D) Correlation between supramarginal gyrus activation (nostalgia >
709	control) and the analgesic effect (control > nostalgia). (E) ROI analysis revealed that brain activation of
710	the lingual gyrus was significantly lower in the nostalgia condition compared to the control condition.
711	(F) ROI analysis revealed that brain activation of the parahippocampal gyrus was significantly lower in
712	the nostalgia condition compared to the control condition. (G) Correlation between lingual gyrus

713	activation and pain rating in the nostalgia-low condition. (H) Correlation between lingual gyrus
714	activation and pain rating in the nostal gia-high condition (* $p \le 0.05$, *** $p < 0.001$).
715	
716	Figure 4. Significant correlations between brain activation and behavioral scores in the cue and pain
717	stages. Left: During nostalgia encoding, the prefrontal thalamus $[-1, -14, -2]$ showed a positive
718	correlation between the BOLD response magnitude and nostalgic strength. Middle: brain activity in the
719	prefrontal thalamus in the cue stage was positively correlated to brain activity in the posterior parietal
720	thalamus in the pain stage. Right: During pain encoding, the posterior parietal thalamus [24, -29, 14]
721	showed a positive correlation between the BOLD response and the analgesic effect.
722	
723	Figure 5. Thalamus activation mediated how nostalgia affected the analgesic effect.
724	
725	Figure 6. (A) Functional connectivity between the BOLD time-series signals in the prefrontal thalamus
726	(seed region) and PAG, as well as in the putamen, amygdala, and hippocampus. (B) Correlation
727	between the thalamus-PAG connectivity in the cue stage and nostalgic strength in the nostalgia
728	condition. (C) Functional connectivity between the BOLD time-series signals in the PAG (seed region),
729	dlPFC, and the frontal pole in the pain stage. (D) Correlation between the PAG-dlPFC connectivity in
730	the pain stage and the pain rating in the nostalgia-low condition.
731	
732	Figure 7. The model of thalamus-centered pathways affected by the analgesic effect associated with
733	nostalgia.

JNeurosci Accepted Manuscript

JNeurosci Accepted Manuscript

Seed region: PAG

JNeurosci Accepted Manuscript

