Investigation: Mechanism of Injury

PAMELA RAST, PHD, LAT, ATC

Texas Wesleyan University
Dept. of Kinesiology
Athletic Training Education

January 21, 2021
Why me?

› I am an Athletic Trainer

› Athletic trainers are health care professionals who collaborate with physicians to optimize activity and participation of patients and clients.

› Athletic training encompasses the prevention, diagnosis, and intervention of emergency, acute, and chronic medical conditions involving impairment, functional limitations, and disabilities.
This lecture is designed to:

• analyze means of injuries
• assist in those questions that arise in claim handling.
• provide points of view on how an injury occurs, the signs and symptoms present and what these discoveries mean
• review the impact such claims have on the insurance industry.

What we will cover...
Content Objectives

At the end of the presentation the participant will:

• have knowledge of anatomy/body structure
• understand types of bodily injury (BI)
• have knowledge of types of medical procedures and rehabilitation
• understand documentation standards for medical related BI claims.
Anatomy & Injury
Skin & Soft Tissue Injuries
Skin

Anatomy (structure)
› Epidermis (thinner outer layer of skin)
› Dermis (thicker connective tissue layer)
› Hypodermis (subcutaneous layer or Sub-Q)
› Muscle and bone

Physiology (function)
› 1- Protection
› 2- Regulation of body temperature
› 3- Sensation
› 4- Excretion
› 5- Blood reservoir
› 6- Synthesis of Vitamin D (cholecalciferol)
Soft Tissue Injuries

- Trauma that happens to the skin is visually exposed
- Categorized as a skin wound
- Defined as a break in the continuity of the soft parts of body structures caused by a trauma to these tissues
- Mechanical forces include:
 - Friction, scraping, compression, tearing, cutting, penetrating
Abrasions

- Skin scraped against a rough surface
- Several layers of skin are torn loose or totally removed
- Usually more painful than a deeper cut because scraping of skin exposes millions of nerve endings
Incision

- Skin has been sharply cut
- Surgical cut made in skin or flesh
Laceration

- Flesh irregularly torn; cut or tear in the skin
- Minimal bleeding, minimal pain, & no numbness or tingling
- Cuts ≤ 0.25” (6mm) deep and 0.5” (1.3cm) long & have smooth edges → can be treated at home
- Deeper lacerations should be treated by physician (stitches)
Avulsion

- Layers of skin torn off completely or only flap of skin remains
- Same mechanism as laceration, but to extent that tissue is completely ripped from it’s source
- May be considerable bleeding
Puncture Wound

- Penetration of skin by sharp object
 - Nails, tacks, ice picks, knives, teeth, needles
- May be small in diameter and not seem serious
- Do require treatment by physician
- Can become infected easily b/c dirt and germs carried deep in the tissue
Contusion

- A blow compresses or crushes the skin surface and produces bleeding under the skin
- Does not break skin
- Bruising due to injury to blood vessels
- Most mild and respond well to RICE
Blister

Continuous rubbing over the surface of the skin causes a collection of fluid below or within the epidermal layer.
A collection of fluid below or within the epidermal layer that develops from friction.

A) Contusion
B) Laceration
C) Blister
D) Hematoma
A collection of fluid below or within the epidermal layer that develops from friction.

A) Contusion
B) Laceration
C) Blister
D) Hematoma
Skeletal System

- 206 bones
- 177 move
- Levers
- 2 parts
Functions of the Skeletal System

› Protect vital organs
› Support soft tissue
› Makes red blood cells (RBCs)
› Reservoir for minerals
› Provide attachments for muscles
› Acts as a system of machines to produce movement
Typical Bony Features

- **Diaphysis**
 - long cylindrical shaft

- **Cortex**
 - hard, dense compact bone forming walls of diaphysis

- **Periosteum**
 - dense, fibrous membrane covering outer surface of diaphysis

- **Endosteum**
 - fibrous membrane that lines the inside of the cortex
Divisions of the Skeleton

› Axial Skeleton
 • skull
 • thorax
 • vertebral column

› Appendicular Skeleton
 • shoulder girdle
 • upper extremities
 • pelvis
 • lower extremities
Head & Spine Injuries

Dr. Peabody took on the most challenging research projects.
Brain (Mid-sagittal View)
Meninges

- Skull
- Dura mater
- Arachnoid
- Pia mater
- Cerebral cortex
- Subarachnoid space
Types of Head Injuries

- Scalp lacerations
- Skull fractures
- Basal Skull fractures
- Concussion
- Post-concussion syndrome
- Cerebral contusions and lacerations
Battle’s Sign & Raccoon Eyes

4/7/2012 - BASILAR SKULL FRACTURE

Fracture of the Occipital Bone
Fracture of the Temporal Bone

Battle’s Sign
Raccoon Eyes
Epidural vs. Subdural Hematomas

Epidural Hematoma

Subdural Hematoma

Copyright © 2004, Mosby, Inc. All Rights Reserved.
Definition of TBI / Concussion

› May result in neuropathological changes
› Acute clinical symptoms largely reflect a functional disturbance rather than a structural injury.
› Results in a graded set of clinical symptoms that may or may not involve LOC
› Resolution of the clinical and cognitive symptoms typically follows a sequential course;
› However, post-concussive symptoms may be prolonged.
Overview of TBI

› What is a traumatic brain injury (TBI)?
 • traumatic biomechanical forces applied to the head, face, neck, or body that affects brain functioning

› Common causes:
 • Falls
 • Motor vehicle accidents
 • Struck by/against an object
 • Assaults / GSW
 • Recreational sports
Overview of TBI

Types of TBI:

- Closed TBI: brain is injured without penetration of the skull
 - Acceleration-deceleration in a single plane
 - Linear
 - Coup / contre-coup injuries
- Open TBI: brain is injured with penetration of the skull (skull Fx)
Coup / Contre-Coup Injury Mechanism

Unilateral Strike

Forward / Backward Movement

http://www.vh.org/adult/patient/neurosurgery/braininjury/03w/hattypesbraininjuries.html

Brain Tissue Deformation Under Lateral Loading

Image Source: The University of Utah: http://sportsnscience.utah.edu/tag/brain/
Spine & Spinal Cord

- Bones - vertebral column
 - 7 Cervical
 - 12 Thoracic
 - 5- Lumbar
 - 5- Sacral

- Discs
 - between vertebra
Etiology of Traumatic SCI

- MVA - most common cause
- Other: falls, violence, sport injuries
- SCI typically occurs from indirect injury from vertebral bones compressing cord
- SCI frequently occur with head injuries
- Cord injury may be caused by direct trauma from knives, bullets, etc.
Classifications of SCI MOI

› Flexion (hyperflexion)
 › Most common because of natural protection position.
 › Generally causes neck to be unstable because stretching of ligaments

› Hyperextension
 › Caused by chin hitting a surface area, such as dashboard or bathtub
 › Usually causes central cord syndrome symptoms
Classifications of SCI MOI

Compression

› Caused by force from above, as hit on head
› Or from below as landing on butt
› Usually affects the lumbar region

Flexion/Rotation

› Most unstable
› Results in tearing of ligamentous structures that normally stabilize the spine
› Usually results in serious neurologic deficits
Intervertebral Disks

Function

- to allow for mobility of the spine and act as shock absorber
- Located between vertebral bodies
- Composed of nucleus pulposus a gelatinous material surrounded by annulus fibrosis - a fibrous coil
Herniated Disc

- Herniated nucleus pulposus, (HNP) slipped disc, ruptured disc
- HNP- annulus becomes weakened/torn and the nucleus pulposus herniates through it.

Risk Factors:
- Standing erect
- Aging changes
- Poor body mechanics
- Overweight
- Trauma
Herniated Disc

› HNP compresses
 • Spinal nerve (sensory or motor component) as it leaves the spinal cord
› Sensory root or nerve usually affected
 • pain, parenthesis, or loss of sensation
› Motor root or nerve may be affected
 • paresis or paralysis
› Radiculopathy-
 • pathology of the nerve root
› Most common site for HNP
 • L4-5 disc - the 5th lumbar nerve root
 • posterior sensory nerve or root compressed
› Classic symptoms-
 • low back sciatica pain
 • pain increases with increase in intrathoracic pressure
Diagnostic Tests

- X-ray
 - identify deformities and narrowing of disk space
- CT/MRI
- Mylogram Nerve conduction studies (EMG)
 - detect electrical activity of skeletal muscles
Types of Vertebral Fractures

<table>
<thead>
<tr>
<th>Type of Fracture</th>
<th>Column Affected</th>
<th>Stable v. Unstable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression/Wedge Fracture</td>
<td>Anterior only</td>
<td>Stable</td>
</tr>
<tr>
<td>Burst Fracture</td>
<td>Anterior & Middle</td>
<td>Unstable</td>
</tr>
<tr>
<td>Fracture/Dislocation Injury</td>
<td>Anterior, Middle, Posterior</td>
<td>Unstable</td>
</tr>
<tr>
<td>Seat belt fracture</td>
<td>Anterior, Middle, Posterior</td>
<td>Unstable</td>
</tr>
</tbody>
</table>
Wedge Fx
Burst Fracture at L2

L1
L2
L3
L4
L5
Sacrum

Fracture

VirtualMedStudent.com
An indication of a basil skull fracture characterized by bruising behind the ear is known as

A) Battle’s Sign
B) Fluid Aspiration
C) Rhabdomyolysis
D) Wruh’s node
An indication of a basil skull fracture characterized by bruising behind the ear is known as

A) **Battle’s Sign**
B) Fluid Aspiration
C) Rhabdomyolysis
D) Wruh’s node
Appendicular Skeletal Fractures

- Transverse
- Linear
- Oblique Nondisplaced
- Oblique Displaced
- Spiral
- Greenstick
- Comminuted
Clavicle Fractures

Mechanism

• Fall onto shoulder (87%)
• Direct blow (7%)
• Fall onto outstretched hand (6%)

Location of Fx

• Type I - Middle Third (80%)
• Type II - Distal Third (15%)
• Type III - Medial Third (5%)
Shoulder Dislocations

Epidemiology

- Anterior: Most common
- Posterior: Uncommon, 10%, Think Electrocutions & Seizures
- Inferior: Rare, hyperabduction injury
Humeral Fx.

› Proximal
 • Most common
 • elderly, osteoporosis
 • Females 2:1 over males
 • FOOSH
 • MVA

› Mid Shaft
 • MVA
 • FOOSH
 • Fracture pattern depends on stress applied

› Holstein-Lewis Fractures
 • Distal 1/3 fractures
 • May entrap or lacerate radial nerve as the fracture passes through the intermuscular septum
Elbow Dislocations

› Epidemiology
 • 11-28% of injuries to the elbow
 • Posterior dislocations most common
 • Highest incidence - 10-20 years and usually sports injuries

› Mechanism of injury
 • Most common - fall on outstretched hand or elbow resulting in force to unlock the olecranon from the trochlea
 • Posterior dislocation - hyperextension, valgus stress, arm abduction, and forearm supination
 • Anterior dislocation - direct force to the posterior forearm with elbow flexed
Forearm Fractures

- Epidemiology
 - Highest ratio of open to closed than any other fracture except the tibia
 - More common in males than females, most likely secondary MVA, contact sports, altercations, and falls

- Mechanism of Injury
 - Commonly associated with MVA, direct trauma missile projectiles, and falls
Distal Radius Fractures

Epidemiology
- Most common fx of UE
- FOOSH
- seen in younger and older pop

Mechanism of Injury
- FOOSH - wrist in dorsiflexion
- High energy injuries (ie MVA) result in significantly displaced, highly unstable fractures

Types
- Colles’ Fracture
 - Smith Fracture (Reverse Colles)
 - Barton Fracture
 - Radial Styloid Fracture (Chauffeur Fracture)
Hip Dislocations

- Significant trauma, usually MVA
- Posterior: Hip flexion, IR, Add
- Anterior: Extreme ER, Abd/Flex
Femoral Head Fractures

- Concurrent with hip dislocation due to shear injury
- Pipkin Classification
 - I: Fracture inferior to fovea
 - II: Fracture superior to fovea
 - III: Femoral head + acetabulum fracture
 - IV: Femoral head + femoral neck fracture
Femoral Neck Fractures

- **Garden Classification**
 - I Valgus impacted
 - II Non-displaced
 - III Complete: Partially Displaced
 - IV Complete: Fully Displaced

- **Functional Classification**
 - Stable (I/II)
 - Unstable (III/IV)
Classification

- # of parts: Head/Neck, GT, LT, Shaft
- Stable
 - Resists medial & compressive Loads after fixation
- Unstable
 - Collapses into varus or shaft medializes despite anatomic reduction with fixation
- Reverse Obliquity
 - major frx line extends from proximal-medial to distal-lateral through intertroch-subtrochanteric region
Intertrochanteric Hip Fx

Stable

Unstable

Reverse Obliquity
Femoral Shaft Fx

- Type 0 - No comminution
- Type 1 - Insignificant butterfly fragment with transverse or short oblique fracture
- Type 2 - Large butterfly of less than 50% of the bony width, > 50% of cortex intact
- Type 3 - Larger butterfly leaving less than 50% of the cortex in contact
- Type 4 - Segmental comminution
 - Winquist and Hansen 66A, 1984
Knee Dislocations

High association of injuries

• Ligamentous Injury
 • ACL, PCL, Posterolateral Corner
 • LCL, MCL

• Vascular Injury
 • Intimal tear vs. Disruption
 • Obtain ABI’s → (+) → Arteriogram
 • Vascular surgery consult with repair within 8hrs

• Peroneal >> Tibial N. injury
Patella Fractures

History
• MVA, fall onto knee, eccentric loading

Physical Exam
• Ability to perform straight leg raise against gravity (i.e., extensor mechanism still intact?)
• Pain, swelling, contusions, lacerations and/or abrasions at the site of injury
• Palpable defect
Tibial Plateau Fractures

- MVA, fall from height, sporting injuries
- Mechanism and energy of injury plays a major role in determining orthopedic care
- Examine soft tissues, neurologic exam (peroneal N.), vascular exam (esp with medial plateau injuries)
- Be aware for compartment syndrome
- Check for knee ligamentous instability
Schatzker Classification of Plateau Fxs

Lower Energy

Type I
Type II
Type III

Higher Energy

Type IV
Type V
Type VI
Tibial Shaft Fractures

Mechanism of Injury

- Can occur in lower energy, torsion type injury (e.g., skiing)
- More common with higher energy direct force (e.g., car bumper)
- Open fractures of the tibia are more common than in any other long bone
Johner and Wruh’s Classification

Ankle Fractures

History
- Mechanism of injury
- Time elapsed since the injury
- Soft-tissue injury
- Has the patient ambulated on the ankle?
- Patient’s age / bone quality
- Associated injuries
- Comorbidities
 - (DM, smoking)
Classification Systems (Lauge-Hansen)

- Based on cadaveric study
- First word refers to position of foot at time of injury
- Second word refers to force applied to foot relative to tibia at time of injury
Classification Systems (Weber-Danis)

- A: Fibula Fracture distal to mortise
- B: Fibula Fracture at the level of the mortise
- C: Fibula Fracture proximal to mortise
Investigating Falls

- Follow path of energy through body

- Fall Onto Buttocks
 - Pelvic fracture
 - Cocygeal fracture
 - Lumbar compression fracture

- Fall Onto Feet
 - Bilateral heel fractures
 - Compression fractures of vertebrae
 - Bilateral Colles’ fractures
This picture represents which type of injury?

A) Tibial Plateau Fracture
B) Burst Fracture
C) Colle’s Fracture
D) Wedge Fracture
This picture represents which type of injury?

A) Tibial Plateau Fracture
B) Burst Fracture
C) Colle’s Fracture
D) Wedge Fracture
Claim Analysis & Reporting

“I’m in a paperwork mood, let ‘er rip.”

shutterstock.com · 118103626
Documentation standards for medical related BI claims

- Medical Record Documentation
 - ER records
 - Medical Tx patterns
 - Provider type
 - Tx duration and frequency
 - Pain mgt.
 - SOAP Notes

- Performance Measure

- Baseline Data

- Record of Visits
Review Medical Records / Procedures

› Original Medical Assessment (ER, Occ Med)
› Surgical Tx
› Rehabilitation (outpatient & inpatient procedures: PT, OT, ST)
› FCEs
› IMEs
In Summary

- The body is mechanically modeled as a system of rigid links connected a joints
- Physical principles of kinetic energy, Laws of motion and conservation of energy govern the types of injury sustained by the ridged links and soft tissue structures of the human body
- When assessing an injury scenario follow the path of energy through the body
In Summary

› Identify and assess risks / causation
 • Posture? / Force?
 • Repetition? / Duration?
 • Environment?

› Use information from reports from the scene, ER records, medical treatment patterns, SOAP notes

› Do records match the mechanism?
QUESTIONS?
THANK YOU!

prast@txwes.edu
References

› Medical Billing & Coding: Medical Terminology

› Rast. P. (Fall 2014) Lecture series presented in Anatomical Basis of Activity EXS 2301. Texas Wesleyan University, Fort Worth, TX

› BLS News Release November 19, 2015

References

- NAEMT (2013) PHTLS: Prehospital Trauma Life Support 7th Ed Chapter 4 Kinematics of Trauma, Jones & Bartlett Learning
In the Corporate/Industrial Setting Athletic Trainers:

- possess confidant evaluation skills, and an understanding of orthopedic protocols for acute, chronic and post surgical rehabilitation.
- perform an ergonomic assessment of both static and dynamic activities, establish functional capacity exam standards
- fit employees with proper personal protective equipment (PPE),
- develop a line of communication when dealing with an employee incident
- develop and record an accurate assessment of job duties & instruct employees in proper task performance
- understand established safety issues and OSHA guidelines
- professionally research topics, create a presentation and present material to pertinent parties