
Tips for prioritizing application and container vulnerabilities

1. CWE

Common Weakness Enumeration (CWE) is an online glossary
categorizing weaknesses into different types. It can used for
prioritization in a number of ways:

Short on time? Use the CWE Top 25 list as a

starting point

Prioritize by impact and focus on the CWEs most

dangerous for your organization

Use CWSS and CWRAF - two scoring systems for

CWEs that allow you to prioritize based on

relevancy to your business

2. CVSS/Severity

The Common Vulnerability Scoring System (CVSS) is an
industry-standard for assessing the severity of vulnerabilities.
Based on how easily a vulnerability can be exploited and the
level of impact if an exploit were to occur, CVSS assigns a score
between 0 and 10, 10 being the most severe score that can be
assigned.

According to the NVD, a CVSS (v3) base score of 0.0-3.9 is
considered "Low" severity; a base CVSS score of 4.0-6.9 is
"Medium" severity, and a base score of 7.0-8.9 is "High"
severity, and a base score of 9.0-10.0 is “Critical” severity.

While all vulnerabilities are important, start with those

assigned a high and critical severity level.

3. Exploitability

The availability of exploit code for a vulnerability makes it easier for
hackers to attack. Once such code is published, this is known as an
“exploit in the wild”. Prioritize those vulnerabilities you know
have exploits.

Distinguishing between the different types of published exploits
will help you narrow your focus even further - there is a difference
between the risk posed by an exploit that is mature, published and
practical and an exploit that is academic and theoretical.

4. Reachability

Some vulnerabilities might not be called as part of the application’s
execution path and pose less of a risk. Rather than prioritizing a
high-severity vulnerability in a function not called by your
application, it is much more effective to prioritize a medium-
severity vulnerability that lies directly in the execution path.

You can prioritize with either, or both, of the following complemen-
tary approaches:

Determining reachability with static analysis of your
source code

Determining whether vulnerabilities are actually being
called in runtime

Important! This does not mean vulnerabilities not being
reached are not important. They also need to be triaged
and fixed, especially the high-severity ones.

5. Age

Try and factor in the age of a vulnerability when making
your prioritization decision. The more recent a vulnerabili-
ty, the less of a chance of an available fix. This fact also
attracts hackers and therefore makes newer vulnerabili-
ties more risky

6. Fixability

If speed is of the essence and you are trying to fix as many
issues as possible within a short timeframe, consider
prioritizing the issues that are the easiest, quickest, and
cheapest to fix.

To do this, try and prioritize by answering these
questions:

Is a fix available? If so, what does it entail?

Will the fix introduce new issues or break your
code?

Is there a patch available for the vulnerability?

7. Automation

The only way to prioritize and de-prioritize hundreds, if
not thousands, of issues across the different projects in
your organization is with the help of automation. Use
policies,to automatically set the parameters guiding
prioritization decisions and your fix efforts, at scale.

Fixing each and every vulnerability is impossible, and most likely - not necessary. You have to prioritize. But where do you start?

Get started with Snyk

7

https://snyk.io/vulnerability-prioritization/

